2013 Vol. 19, No. 4
Article Contents

XU Hui-yong, FENG Jian-wei, GE Yu-rong. RESEARCH PROGRESS ON MECHANISM AND QUANTATIVE PREDICTION OF STRUCTURAL FRACTURES IN TIGHT-SAND RESERVOIRS[J]. Journal of Geomechanics, 2013, 19(4): 377-384.
Citation: XU Hui-yong, FENG Jian-wei, GE Yu-rong. RESEARCH PROGRESS ON MECHANISM AND QUANTATIVE PREDICTION OF STRUCTURAL FRACTURES IN TIGHT-SAND RESERVOIRS[J]. Journal of Geomechanics, 2013, 19(4): 377-384.

RESEARCH PROGRESS ON MECHANISM AND QUANTATIVE PREDICTION OF STRUCTURAL FRACTURES IN TIGHT-SAND RESERVOIRS

  • As fractured tight-sand reservoirs was thought to be an important type for exploration and production of unconventional oil and gas resources at present, understanding mechanism of structural fracture networks in reservoirs accordingly is thought to be the research focus. From sides of structural geology and rock mechanics to make comprehensive analysis, such as comparisons of rock damage mechanics experiments, constitutive relation of composite formation and its failure criteria, and quantitative method for predicting fracture distribution, it is shown that generation, location, orientation of fractures and quantification are the keys to predict fracture networks. Then it is shown that there exist three main directions for fracture research, including fracture mechanism study using structural geology, damage mechanics and laboratory experiments, composite rock failure criterion based on energy conservation law considering multiple factors, and fracture parameters of three-dimensional quantitative characterization using finite element numerical method based on fine structure model.

  • 加载中
  • [1] 张雨晴, 王志章.致密碎屑岩裂缝性储层预测方法综述[J].科技导报, 2010, 28(14):109~111.

    Google Scholar

    ZHANG Yu-qing, WANG Zhi-zhang. A review of prediction methods for reservoirs of tight fractured clastic rock[J]. Science & Technology Review, 2010, 28(14):109~111.

    Google Scholar

    [2] 谢克昌. 未来5-10年是非常规天然气发展关键期[EB/OL]. (2012-03-19). http://energy.people.com.cn/GB/17425065.html.

    Google Scholar

    [3] 王军善. 致密气开发应领跑非常规天然气[EB/OL]. (2012-05-03). http://www.crd.net.cn/2012-05/03/content_5161615.html.

    Google Scholar

    [4] 国土资源部. 去年中国天然气产量首破千亿立方米[EB/OL]. (2012-02-23). http://finance.chinanews.com/ny/2012/02-23/3692395.html.

    Google Scholar

    [5] 王军, 戴俊生, 冯建伟, 等.乌夏断裂带二叠系火山岩-碎屑岩混杂地层裂缝预测[J].中国石油大学学报:自然科学版, 2010, 34(4):19~20.

    Google Scholar

    WANG Jun, DAI Jun-sheng, FENG Jian-wei, et al. Fracture prediction of Permian volcanic-clastic rock formation in Wuxia fault belt[J]. Journal of China University of Petroleum:Edition of Natural Science, 2010, 34(4):19~20.

    Google Scholar

    [6] 王建华.DFN模型裂缝建模新技术[J].断块油气田, 2008, 15(6):55~57.

    Google Scholar

    WANG Jian-hua. DFN model:A new modelling technology for fracture[J]. Fault-block Oil & Gas Field, 2008, 15(6):55~57.

    Google Scholar

    [7] 李明. 准噶尔盆地乌夏地区二叠系储层裂缝研究[D]. 东营: 中国石油大学(华东), 2008: 2~5.http://d.wanfangdata.com.cn/Thesis/Y1363311

    Google Scholar

    LI Ming. Study on the Permian reservoir tectoclase in Wuxia area of Junggar Basin[D]. Dongying:China University of Petroleum (East China), 2008:2~5.

    Google Scholar

    [8] 孙业恒. 史南油田史深100块裂缝性砂岩油藏建模及数值模拟研究[D]. 北京: 中国矿业大学, 2008.http://cdmd.cnki.com.cn/Article/CDMD-11413-2009263096.htm

    Google Scholar

    SUN Ye-heng. Study on reservoir modeling and numerical simulation for fractured sandstone reservoir in block Shishen-100 in Shinan Oilfield[D]. Beijing:China University of Mining & Technology, 2008.

    Google Scholar

    [9] 唐湘蓉, 李晶.构造有限元数值模拟在裂缝预测中的应用[J].特种油气藏, 2005, 12(2):25~26.

    Google Scholar

    TANG Xiang-rong, LI Jing. Application of finite element numerical simulation of tectonic stress field in fracture prediction[J]. Special Oil and Gas Reservoirs, 2005, 12(2):25~26.

    Google Scholar

    [10] 石胜群.三维构造应力场数值模拟技术预测泥岩裂缝研究应用[J].中国西部科技, 2008, 27:37~39. doi: 10.3969/j.issn.1671-6396.2008.04.015

    CrossRef Google Scholar

    SHI Sheng-qun. Study and application of mudstone fracture prediction by 3D tectonic stress field numerical simulation technology[J]. Science and Technology of West China, 2008, 27:37~39. doi: 10.3969/j.issn.1671-6396.2008.04.015

    CrossRef Google Scholar

    [11] 唐永, 梅廉夫, 陈友智, 等.川东北宣汉-达县地区构造应力场对裂缝的控制[J].地质力学学报, 2012, 18(2):120~139.

    Google Scholar

    TANG Yong, MEI Lian-fu, CHEN You-zhi, et al. Controlling of structural stress field to the fractures in Xuanhan-Daxian region, northeastern Sichuan Basin, China[J]. Journal of Geomechanics, 2012, 18(2):120~139.

    Google Scholar

    [12] 尤广芬. 储层裂缝预测的三维有限元数值模拟研究[D]. 成都: 成都理工大学, 2010: 1~3.http://d.wanfangdata.com.cn/Thesis/D123852

    Google Scholar

    YOU Guang-fen. Reservoir fracture prediction of three-dimensional finite element numerical simulation[D]. Chengdu:Chengdu University of Technology, 2010:1~3.

    Google Scholar

    [13] 戴俊生, 冯建伟, 李明, 等.砂泥岩间互地层裂缝延伸规律探讨[J].地学前缘, 2011, 18(2):277~283.

    Google Scholar

    DAI Jun-sheng, FENG Jian-wei, LI Ming, et al. Discussion on the extension law of structural fracture in sand-mud interbed formation[J]. Earth Science Frontiers, 2011, 18(2):277~283.

    Google Scholar

    [14] 冯建伟, 戴俊生, 马占荣, 等.低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J].地质力学学报, 2011, 17(4):303~311.

    Google Scholar

    FENG Jian-wei, DAI Jun-sheng, MA Zhan-rong, et al. Theoretical model about fracture porosity, permeability and stress field in the low-permeability sandstone[J]. Journal of Geomechanics, 2011, 17(4):303~311.

    Google Scholar

    [15] 戴俊生, 张继标, 冯建伟, 等.高邮凹陷真武断裂带西部低级序断层发育规律预测[J].地质力学学报, 2012, 18(1):11~21.

    Google Scholar

    DAI Jun-sheng, ZHANG Ji-biao, FENG Jian-wei, et al. Development law and prediction of the lower-order faults in the west of Zhenwu fault zone in Gaoyou sag[J]. Journal of Geomechanics, 2012, 18(1):11~21.

    Google Scholar

    [16] 邱战洪. 非线性动力损伤力学理论及其数值分析模型[D]. 杭州: 浙江大学, 2005: 14~19.http://cdmd.cnki.com.cn/Article/CDMD-10335-2005042097.htm

    Google Scholar

    QIU Zhan-hong. Theory of non-linear dynamic damage mechanics and numerical modeling[D]. Hangzhou:Zhejiang University, 2005:14~19.

    Google Scholar

    [17] 谢和平, 彭瑞东, 周宏伟, 等.基于断裂力学与损伤力学的岩石强度理论研究进展[J].自然科学进展, 2004, 14(10):1086~1090. doi: 10.3321/j.issn:1002-008X.2004.10.002

    CrossRef Google Scholar

    XIE He-ping, PENG Rei-dong, ZHOU Hong-wei, et al. Progress in strength theory of rocks based on fracture mechanics and damage mechanics[J]. Progress in Natural Science, 2004, 14(10):1086~1090. doi: 10.3321/j.issn:1002-008X.2004.10.002

    CrossRef Google Scholar

    [18] 赵永红, 熊春阳, 戴天环, 等. 细砂岩变形破坏过程的实验研究[C]//"力学2000"学术大会论文集. 北京: 气象出版社, 2000: 351~352.

    Google Scholar

    ZHAO Yong-hong, XIONG Chun-yang, DAI Tian-huan, et al. Experimental study on deformation damage process of fine sandstone[C]//Proceedings of "Mechanics 2000" Conference. Beijing:Meteorology Press, 2000:351~352.

    Google Scholar

    [19] Marigo J J. Modelling of brittle and fatigue damage for elastic materials by growth microvoids[J]. Engineering Fracturd Mechanics, 1985, 21(4):861. doi: 10.1016/0013-7944(85)90093-1

    CrossRef Google Scholar

    [20] 崔玉红, 周世才, 陈蕴生.非贯通细观裂纹节理介质CT实验的数值模拟及影响参数讨论[J].岩石力学与工程学报, 2006, 25(3):631~633.

    Google Scholar

    CUI Yu-hong, ZHOU Shi-cai, CHEN Yun-sheng. Numerical analysis of meso-crack and meso-damage laws and its influential parameters for non-interpenetrated jointed media based on experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3):631~633.

    Google Scholar

    [21] 刘京红, 姜耀东, 赵毅鑫, 等.基于CT图像的岩石破裂过程裂纹分型特征分析[J].河北农业大学学报, 2011, 34(4):104~107.

    Google Scholar

    LIU Jing-hong, JIANG Yao-dong, ZHAO Yi-xin, et al. Fractal characteristic analysis of rock breakage process based on CT test images[J]. Journal of Agricultural University of Hebei, 2011, 34(4):104~107.

    Google Scholar

    [22] 肖长富, 邱贤德.复合岩石在单向和三轴压缩应力状态下的强度和变形特征的探讨[J].重庆大学学报, 1983, 6(3):24~26.

    Google Scholar

    XIAO Chang-fu, QIU Xian-de. Investigation of strength and deformation of composite rock in uniaxial and triaxial compression test[J]. Journal of Chongqing University, 1983, 6(3):24~26.

    Google Scholar

    [23] 赵平劳.层状岩体抗弯刚度及其软弱夹层效应[J].兰州大学学报:自然科学版, 1992, 28(8):150~155.

    Google Scholar

    ZHAO Ping-lao. The bending rigidity of bedded rock mass and effect of weak intercalations[J]. Journal of Lanzhou University:Natural Sciences, 1992, 28(8):150~155.

    Google Scholar

    [24] 阳友奎, 蒋为民.复合岩石的破坏准则[J].重庆大学学报, 1990, 13(6):20~25.

    Google Scholar

    YANG You-kui, JIANG Wei-min. A failure criterion of composite rock[J]. Journal of Chongqing University, 1990, 13(6):20~25.

    Google Scholar

    [25] SUJATHA V, CHANDRA Kishen J M. Energy release rate due to friction atbi-material interface in dams[J]. Journalof Engineering Mechanics, ASCE, 2003, 129(7):793~800. doi: 10.1061/(ASCE)0733-9399(2003)129:7(793)

    CrossRef Google Scholar

    [26] LABUZ J F, DAIL S T. Residual strength and fracture energy from plane-strain testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10):882~889. doi: 10.1061/(ASCE)1090-0241(2000)126:10(882)

    CrossRef Google Scholar

    [27] Lundberg B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(6):187~197.

    Google Scholar

    [28] 杨春和, 李银平.互层盐岩体的Cosserat介质扩展本构模型[J].岩石力学与工程学报, 2005, 24(23):4226~4232. doi: 10.3321/j.issn:1000-6915.2005.23.005

    CrossRef Google Scholar

    YANG Chun-he, LI Yin-ping. Expanded Cosserat medium constitutive model for laminated salt rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23):4226~4232. doi: 10.3321/j.issn:1000-6915.2005.23.005

    CrossRef Google Scholar

    [29] 李银平, 杨春和.层状盐岩体的三维Cosserat介质扩展本构模型[J].岩土力学, 2006, 27(4):509~512.

    Google Scholar

    LI Yin-ping, YANG Chun-he. Three-dimensional expanded Cosserat medium constitutive model for laminated salt rock[J]. Rock and Soil Mechanics, 2006, 27(4):509~512.

    Google Scholar

    [30] 曾联波, 赵继勇, 朱圣举, 等.岩层非均质性对裂缝发育的影响研究[J].自然科学进展, 2008, 18(2):216~219.

    Google Scholar

    ZENG Lian-bo, ZHAO Ji-yong, ZHU Sheng-ju, et al. Impact of rock anisotropy on fracture development[J]. Progress in Natural Science, 2008, 18(2):216~219.

    Google Scholar

    [31] 金峰, 胡卫, 张冲, 等.考虑弹塑性本构的三维模态变形体离散元方法断裂模拟[J].工程力学, 2011, 28(5):1~4.

    Google Scholar

    JIN Feng, HU Wei, ZHANG Chong, et al. A fracture simulation using 3-D mode distinct element method (3MDEM) with elastoplastic constitutive model[J]. Engineering Mechanics, 2011, 28(5):1~4.

    Google Scholar

    [32] Barton N, Bandis S, Bakhtar K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3):121~140.

    Google Scholar

    [33] JING Z, WILLS-Richards J, WATANABE K, et al. A new 3-D stochastic model for HDR geothermal reservoir in fractured crystalline rock[M]. France:Strasbourg, 1998:28~30.

    Google Scholar

    [34] 赵延林, 赵阳升, 郤保平.裂隙岩体的固气耦合模型及其在岩盐储气库中的应用[J].矿业研究与开发, 2006, 26(2):38~40.

    Google Scholar

    ZHAO Yan-lin, ZHAO Yang-sheng, XI Bao-ping. Coupling mathematical model of solid and gas for fractured rock and its application in rock salt cavern gas storage[J]. Mining Research and Development, 2006, 26(2):38~40.

    Google Scholar

    [35] 吴时国, 王秀玲, 季玉新, 等.3Dmove构造裂缝预测技术在古潜山的应用研究[J].中国科学D辑:地球科学, 2004, 34(9):818~824.

    Google Scholar

    WU Shi-guo, WANG Xiu-ling, JI Yu-xin, et al. Application of 3Dmove structural fracture Predietion technology in paleo-buried hill[J]. Science in China Series D:Earth Sciences, 2004, 34(9):818~824.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(337) PDF downloads(3) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint