2014 Vol. 20, No. 4
Article Contents

ZHANG Dong-tao, TONG Heng-mao, ZHAO Hai-tao, LI Xue, ZHANG Hao. CHARACTERISTICS AND REGULARITY OF LONGITUDINAL GEOSTRESS DISTRIBUTION IN SAND-MUDSTONE STRATA[J]. Journal of Geomechanics, 2014, 20(4): 352-362.
Citation: ZHANG Dong-tao, TONG Heng-mao, ZHAO Hai-tao, LI Xue, ZHANG Hao. CHARACTERISTICS AND REGULARITY OF LONGITUDINAL GEOSTRESS DISTRIBUTION IN SAND-MUDSTONE STRATA[J]. Journal of Geomechanics, 2014, 20(4): 352-362.

CHARACTERISTICS AND REGULARITY OF LONGITUDINAL GEOSTRESS DISTRIBUTION IN SAND-MUDSTONE STRATA

More Information
  • Based on the analysis of basin geomechanics and mechanical properties of rocks, the characteristics and regularity of geostress distribution in the sand-mudstone strata are studied with numerical modeling by using the conceptual model of sand-mudstone strata abstracted from actual sedimentary strata. The results showed that horizontal principal stress mutates at the interface of sand-mudstone strata, and the change degree is mainly related to the difference of mechanical property of rock on both sides, then the regional tectonic stress. The effect of Young Modulus on the horizontal maximum principal stress is greater than that on the horizontal minimum principal stress; while the effect of Poisson Ratio on the horizontal minimum principal stress is higher than that on the horizontal maximum principal stress. The effect of Young Modulus and Possion Ratio on the horizontal maximum principal stress is different in different stress state. In extensional strike-slip and compressional stress state, Possion Ratio has greater roughly equivalent and samller effect on the horizontal maximum principal stress respectively. While, the effect of Possion Ratio on the horizontal minimum principal stress is always greater than that of Young Modulus in different stress state. The way of lithology changes in strata (mutations or gradient) has remarkable influence on the stress difference of horizontal principal stress, while the thicknesses no effect. The above understanding is valuable for effective reservoir hydraulic fracturing and reformation.

  • 加载中
  • [1] Brown E T, Hoek E. Trends in relationships between measured in-situ stresses and depth [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211~215.

    Google Scholar

    [2] Stacey T R, Wesseloo J. Updated in situ stress database for Southern Africa [M]. Proceedings and Monographs in Engineering, Water and Earth Sciences, 2006: 467~471.

    Google Scholar

    [3] Fuchs K, Muller B. World stress map of the earth: A key to tectonic processes and technological applications[J]. Natrwissen-schaften, 2001, 88: 357~371. doi: 10.1007/s001140100253

    CrossRef Google Scholar

    [4] Worotniki G, Denham D. The state stress in the upper part of the earth's crust in Australia according to measurements in tunnels and mines and from seismic observation[C]//Investigation of Stress in Rock-Advances in Stress Measurement. Sydney: Int. Soc. Rock Mech. Symp., 1976: 71~82.

    Google Scholar

    [5] 朱焕春, 陶振宇.不同岩石中地应力分布[J].地震学报, 1994, 16(1):50~62.

    Google Scholar

    ZHU Huan-chun, TAO Zhen-yu. Geostress distribution in different rocks [J]. Acta Seismologica Sinica, 1994, 16(1): 50~62.

    Google Scholar

    [6] 景锋, 盛谦, 余美万. 地应力与岩石弹性模量随埋深变化及相互影响[C]//第十次全国岩石力学与工程学术大会论文集. 2010: 70~73.

    Google Scholar

    JING Feng, SHENG Qian, YU Mei-wan. Change and rule of the geostress and the slastic modulus of rock with depth and their mutual impact[C]//Symposium of The 11th National Conference on Rock Mechanics and Engineering. 2010: 70~73.

    Google Scholar

    [7] 李新平, 汪斌, 周桂龙.我国大陆实测深部地应力分布规律研究[J].岩土力学与工程学报, 2012:31(增1):2875~2880.

    Google Scholar

    [8] 赵德安, 陈志敏, 蔡小林, 等.中国地应力场分布规律统计分析[J].岩石力学与工程学报, 2007, 26(6):1266~1270.

    Google Scholar

    ZHAO De'an, CHEN Zhi-min, CAI Xiao-lin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1266~1270.

    Google Scholar

    [9] 康红普, 林键, 张晓, 等.潞安矿区井下地应力测量及分布规律研究[J].岩土力学, 2010, 31(3):828~831.

    Google Scholar

    KANG Hong-pu, LIN Jian, ZHANG Xiao, et al. In-situ stress measurements and distribution laws in Lu'an underground coal mines[J]. Rock and Soil Mechanics, 2010, 31(3): 828~831.

    Google Scholar

    [10] 秦向辉, 谭成轩, 孙进忠, 等.地应力与岩石弹性模量关系试验研究[J].岩土力学, 2012, 33(6):1690~1694.

    Google Scholar

    QIN Xiang-hui, TAN Cheng-xuan, SUN Jin-zhong, et al. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 2012, 33(6): 1690~1694.

    Google Scholar

    [11] 景锋, 盛谦, 张勇慧, 等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报, 2007, 26(10):2057~2060.

    Google Scholar

    JING Feng, SHENG Qian, ZHANG Yong-hui, et al. Research on distribution rule of shallow crustal geostress in China mainland[J]. Chinese Journal of Rock Machanics and Engineering, 2007, 26(10):2057~2060.

    Google Scholar

    [12] Gudmundsson A. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes[J]. Earth-Science Reviews, 2006, 79: 1~31. doi: 10.1016/j.earscirev.2006.06.006

    CrossRef Google Scholar

    [13] Gudmundsson A, Simmenes T H, Larsen B, et al. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones[J]. Journal of Structural Geology, 2010, 32: 1643~1655. doi: 10.1016/j.jsg.2009.08.013

    CrossRef Google Scholar

    [14] Gudmundsson A. Rock fractures in geological processes[M]. Cambridge University Press, 2011: 1~570.

    Google Scholar

    [15] 李道品, 张连春.开发低渗透油田莫失良机[J].中国石油企业, 2004, (12):44~45. doi: 10.3969/j.issn.1672-4267.2004.12.013

    CrossRef Google Scholar

    LI Dao-pin, ZHANG Lian-chun. Prospects for developing low permeability oilfields[J]. Chinese Petroleum Corporation, 2004, (12): 44~45. doi: 10.3969/j.issn.1672-4267.2004.12.013

    CrossRef Google Scholar

    [16] Tong H, Yin A. Reactivation tendency analysis: A theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 2011, 503: 195~200. doi: 10.1016/j.tecto.2011.02.012

    CrossRef Google Scholar

    [17] Tong H, Wang J, Zhao H, et al. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China: Earth Sciences, 2014, 57: 1~10.

    Google Scholar

    [18] 陈子光.岩石力学性质与构造应力场[M].北京:地质出版社, 1986.

    Google Scholar

    CHEN Zi-guang. Mechanical properties of rock and tectonic stress field[M]. Beijing: Geological Publishing House, 1986: 6~15.

    Google Scholar

    [19] 甘舜仙.有限元技术与程序[M].北京:北京理工大学出版社, 1988:243~299.

    Google Scholar

    GAN Shun-xian. Finite element techniques and procedures[M]. Beijing: Beijing Institute of Technology Press, 1988: 243~299.

    Google Scholar

    [20] 潘别桐, 黄润秋.工程地质数值法[M].北京:地质出版社, 1994:6~52.

    Google Scholar

    PAN Bie-tong, HUANG Run-qiu. Engineering geological numerical method[M]. Beijing: Geological Publishing House, 1994: 6~52.

    Google Scholar

    [21] 童亨茂.断层开启和封闭的定量分析方法[J].石油与天然气地质, 1998, 19(3):215~220. doi: 10.11743/ogg19980308

    CrossRef Google Scholar

    TONG Heng-mao. Quantitative analysis of fault opening and sealing [J]. Oil and Gas geology, 1998, 19(3): 215~220. doi: 10.11743/ogg19980308

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1214) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint