2017 Vol. 23, No. 1
Article Contents

ZHANG Shu-wei, YANG Zhen-yu, WANG Xi-sheng, Maria T Cioppa, QIAO Yan-song, HUO Jun-jie, Edgardo Cañón-Tapia, ZHAO Yue. ANISOTROPY OF MAGNETIC SUSCEPTIBILITY:THEORY AND CASE STUDIES[J]. Journal of Geomechanics, 2017, 23(1): 135-140.
Citation: ZHANG Shu-wei, YANG Zhen-yu, WANG Xi-sheng, Maria T Cioppa, QIAO Yan-song, HUO Jun-jie, Edgardo Cañón-Tapia, ZHAO Yue. ANISOTROPY OF MAGNETIC SUSCEPTIBILITY:THEORY AND CASE STUDIES[J]. Journal of Geomechanics, 2017, 23(1): 135-140.

ANISOTROPY OF MAGNETIC SUSCEPTIBILITY:THEORY AND CASE STUDIES

  • Anisotropy of magnetic susceptibility (AMS) has been widely utilized to study orientation of magnetic minerals due to the paleo-flow, and direction of magnetic minerals or their recrystallization caused by tectonic stress. We presented the AMS principle and parameters, and studied AMS changes in:(1) two basalt samples (unheated and heated) that have experienced tectonic deformation, with multidomain (MD) titanomagnetite as dominant magnetic minerals, and this is from a previous study; (2) lake sediments that are majorly characterized by MD magnetite. The results show that AMS can sensitively investigate orientation of magnetic minerals.

  • 加载中
  • [1] CAÑÓN-TAPIA E. Factors affecting the relative importance of shape and distribution anisotropy in rocks:theory and experiments[J]. Tectonophysics, 1997, 340:117-131.

    Google Scholar

    [2] 张拴宏, 周显强.磁化率各向异性地学应用综述[J].地质论评, 1999, 45(6):613-620.

    Google Scholar

    [3] BORRADAILE G J, JACKSON M. Anisotropy of magnetic susceptibility (AMS):Magnetic petrofabrics of deformed rocks[J]. Geol. Soc. Lond. Spec. Publ., 2004, 238:299-360. doi: 10.1144/GSL.SP.2004.238.01.18

    CrossRef Google Scholar

    [4] JACKSON M. Anisotropy of magnetic remanence:a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy[J]. Pure and Applied Geophysics, 1991, 136(1):1-28. doi: 10.1007/BF00878885

    CrossRef Google Scholar

    [5] RAPOSO M I B, BERQUÓ T S. Tectonic fabric revealed by AARM of the proterozoic mafic dike swarm in the Salvador city (Bahia State):São Francisco Craton, NE Brazil[J]. Phys. Earth Planet. Inter., 2008, 167:179-194. doi: 10.1016/j.pepi.2008.03.012

    CrossRef Google Scholar

    [6] CAÑÓN-TAPIA E, WALKER G P L, HERRERO-BERVERA E. The internal structure of lava flows-insights from AMS measurements (Ⅰ):Near-vent a'a.[J]. J. Volcanol. Geotherm. Res., 1996, 70:21-36. doi: 10.1016/0377-0273(95)00050-X

    CrossRef Google Scholar

    [7] HARGRAVES R B, JOHNSON D, CHAN C Y. Distribution anisotropy:The cause of AMS in igneous rocks?[J]. Geophys. Res. Lett., 1991, 18:2193-2196. doi: 10.1029/91GL01777

    CrossRef Google Scholar

    [8] GAILLOT P, DE SAINT-BLANQUAT M, BOUCHEZ J L. Effects of magnetic interactions in anisotropy of magnetic susceptibility:Models, experiments and implications for igneous rock fabrics quantification[J]. Tectonophysics, 2006, 418:3-19. doi: 10.1016/j.tecto.2005.12.010

    CrossRef Google Scholar

    [9] GRÉGOIRE V, DARROZES P, GAILLOT P, et al. Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric:A three-dimensional case study[J]. J. Struct. Geol., 1998, 20(7):937-944. doi: 10.1016/S0191-8141(98)00022-4

    CrossRef Google Scholar

    [10] TARLING D H, HROUDA F. The magnetic anisotropy of rocks[M]. London:Chapman & Hall, 1993:1-217.

    Google Scholar

    [11] ELLWOOD B B. Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements[J]. Earth Planet. Sci. Lett., 1978, 41:254-264. doi: 10.1016/0012-821X(78)90182-6

    CrossRef Google Scholar

    [12] JELINEK V. Characterization of the magnetic fabric of rocks[J]. Tectonophysics, 1981, 79:63-67. doi: 10.1016/0040-1951(81)90110-4

    CrossRef Google Scholar

    [13] HROUDA F. Magnetic anisotropy of rocks and its application in geology and geophysics[J]. Geophys. Surv., 1982, 5:37-82. doi: 10.1007/BF01450244

    CrossRef Google Scholar

    [14] CAÑÓN-TAPIA E. AMS parameters:Guidelines for their rational selection[J]. Pure and Applied Geophysics, 1994, 142:365-382. doi: 10.1007/BF00879310

    CrossRef Google Scholar

    [15] ZHANG S W. Magnetic anisotropy of igneous rocks from the Taimyr peninsula, Arctic Russia. Unpublished M.Sc Thesis, University of Bergen. 132 pp.

    Google Scholar

    [16] INGER S, SCOTT R A, GOLIONKO B G. Tectonic evolution of the Taimyr Peninsula, northern Russia:Implications for Arctic continental assembly[J]. Journal of the Geological Society, 1999, 156:1069-1072. doi: 10.1144/gsjgs.156.6.1069

    CrossRef Google Scholar

    [17] WALDERHAUG H J, EIDE E A, SCOTT R A, et al. Palaeomagnetism and 40Ar/39Ar geochronology from the South Taimyr igneous complex, Arctic Russia:A Middle-Late Triassic magmatic pulse after Siberian flood-basalt volcanism[J]. Geophys. J. Int., 2005, 163:1-17. doi: 10.1111/gji.2005.163.issue-1

    CrossRef Google Scholar

    [18] 张淑伟, WALDERHAUG H J, 杨跃俊, 等.俄罗斯北部泰米尔半岛褶皱带岩床和玄武岩岩石磁学及磁各向异性[J].科学通报, 2008, 53(2):229-237.

    Google Scholar

    ZHANG Shu-wei, WALDERHAUG H J, YANG Yue-jun, et al. Rock magnetism and magnetic anisotropy in folded sills and basaltic flows:A case study of volcanics from the Taimyr Peninsula, Northern Russia[J]. Chinese Science Bulletin, 2008, 53:759-767.

    Google Scholar

    [19] ZHANG S W, CAÑÓN-TAPIA E, WALDERHAUG H J. Magnetic fabric and its significance in the sills and lava flows from Taimyr fold-belt, Arctic Siberia[J]. Tectonophysics, 2011, 505:68-85. doi: 10.1016/j.tecto.2011.04.004

    CrossRef Google Scholar

    [20] ROBERT D, HATCHER J R. Structural geology:Principles, concepts, and problems. Merrill Publishing Company and A Bell & Howell Information Company, Columbus Toronto London Melbourne.

    Google Scholar

    [21] DE WALL H, WARR L N. Oblique magnetic fabric in siderite-bearing pelitic rocks of the Upper Carboniferous Culm Basin, SW England:An indicator for paleo-fluid migration?[J]. Geol. Soc. Lond. Spec. Publ., 2004, 238:493-507. doi: 10.1144/GSL.SP.2004.238.01.25

    CrossRef Google Scholar

    [22] HENRY B, PLENIER G, CAMPS P. Post-emplacement tilting of lava flows inferred from magnetic fabric study:the example of Oligocene lavas in the Jeanne d'Arc Peninsula (Kerguelen Islands)[J]. J. Volcanol. Geotherm. Res., 2003, 127:153-164. doi: 10.1016/S0377-0273(03)00198-7

    CrossRef Google Scholar

    [23] REES A I. The use of anisotropy of magnetic susceptibility in the estimation of sedimentary fabric[J]. Sedimentology, 1965, 4(4):257-271. doi: 10.1111/sed.1965.4.issue-4

    CrossRef Google Scholar

    [24] ELLWOOD B B. Sample shape and magnetic grain sizes:two possible controls on the anisotropy of the magnetic susceptibility variability in deep-sea sediments[J]. Earth Planet. Sci. Lett., 1979, 43:309-314. doi: 10.1016/0012-821X(79)90216-4

    CrossRef Google Scholar

    [25] LAKSHMI B.V., SATYANARAYANA K.V.V., BASAVAIAH N., GAWALI P. Anisotropy of magnetic susceptibility of earthquake-affected soft sediments:example from Ther village, Latur, Maharashtra, India[J]. Current Science, 2015, 108(4):708-712.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(2172) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint