2017 Vol. 36, No. 11
Article Contents

REN Guangming, PANG Weihua, PAN Guitang, WANG Liquan, SUN Zhiming, YIN Fuguang, CUI Xiaozhuang, WANG Dongbing, DENG Qi, REN Fei. Ascertainment of the Mesoproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance[J]. Geological Bulletin of China, 2017, 36(11): 2061-2075.
Citation: REN Guangming, PANG Weihua, PAN Guitang, WANG Liquan, SUN Zhiming, YIN Fuguang, CUI Xiaozhuang, WANG Dongbing, DENG Qi, REN Fei. Ascertainment of the Mesoproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance[J]. Geological Bulletin of China, 2017, 36(11): 2061-2075.

Ascertainment of the Mesoproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance

  • The Caiziyuan ophiolitic mélange along the Guanhe-Tongan area on the western margin of the Yangtze Block have been ascertained by the authors. The Caiziyuan ophiolitic mélange is characterized by the strong shearing deformation of the matrix and the oceanic tectonic rocks. The substrate is mainly composed of metamorphic siltstone, slate, siliceous slate, schist and phyllite, whereas the oceanic tectonic rock consists of serpentine, gabbro, basalt, siliceous rock and marble, with some basalts retaining the pillow structure. The relationship between the tectonic rocks is tectonic contact. The gabbro and basalt from the Caiziyuan ophiolitic mélange exhibit LREE loss, similar to the N-MORB rare earth element distribution model, relative to the N-MORB enrichment of large ion lithophile elements (LILE), and depletion of Nb and Ta, extremely low Nb/U ratio (averagely 9.74), Nb/Th ratio (averagely 3.02) and V/Ti ratio (averagely 0.1), showing typical MORB-like geochemical features of basalt and suggesting probable formation in an intra-oceanic arc environment. LA-ICP-MS zircon U-Pb dating shows that the age of the Taoshuwan gabbro is 1375±7Ma (MSWD=1.2, n=21), which may represent the time of the initial subduction of the Caiziyuan-Tongan oceanic crust. The ascertainment of the Caiziyuan ophiolitic mélange has the great scientific significance for further understanding of the properties of the Tongan Group (or Tongan Formation), studying the Paleo-Mesoproterozoic stratigraphic system, geological evolution, magmatism, and tectonic orientation of the western Yangtze Block, re-dividing the basement tectonic unit and exploring the evolution from the global Columbia supercontinent breakup to the Rodinia supercontinent convergence.

  • 加载中
  • [1] 张旗.中国蛇绿岩研究概述[J].岩石学报, 1995, 30(增刊):1-9.

    Google Scholar

    [2] 倪志耀, 王仁民, 袁建平.元古宙蛇绿岩研究中有关问题的讨论[J].地球科学进展, 1999, 14(5):468-474.

    Google Scholar

    [3] 刘肇昌, 李凡友, 钟康惠, 等.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社, 1996:5-165.

    Google Scholar

    [4] 赵彻终, 刘肇昌, 李凡友.会理-东川元古代海相火山岩带的特征与形成环境[J].矿物岩石, 1999, 19(2):17-24.

    Google Scholar

    [5] 吴根耀.从关键地质事件看华南的前寒武系划分[J].地层学杂志, 2006, 30(3):271-286.

    Google Scholar

    [6] 耿元生, 杨崇辉, 王新社, 等.扬子地台西缘变质基底演化[M].北京:地质出版社, 2008:1-202.

    Google Scholar

    [7] 李继亮, 张绍宗.通安-小关河元古代碰撞缝合线的发现及其地质意义[J].地质科学, 1987, 1:81-85.

    Google Scholar

    [8] 王康明, 阚泽忠.扬子地台西缘对Rodinia形成期地质响应[J].华南地质与矿产, 2001, 4:22-27. doi: 10.3969/j.issn.1007-3701.2001.04.007

    CrossRef Google Scholar

    [9] 王冬兵, 孙志明, 尹福光, 等.扬子陆块西缘河口群的时代:来自火山岩LA-ICP-MS U-Pb年龄的证据[J].地层学杂志, 2012, 36(3):630-635.

    Google Scholar

    [10] 耿元生, 柳永清, 高林志, 等.扬子克拉通西南缘中元古代通安组的形成时代[J].地质学报, 2012, 86(9):1479-1490.

    Google Scholar

    [11] 任光明, 庞维华, 孙志明, 等.扬子西缘会理地区通安组角闪岩锆石U-Pb定年及其地质意义[J].矿物岩石, 2014, 34(2):33-39.

    Google Scholar

    [12] 庞维华, 任光明, 孙志明, 等.扬子地块西缘古-中元古代地层划分对比研究:来自通安组火山岩锆石U-Pb年龄证据[J].中国地质, 2015, 42(4):921-936.

    Google Scholar

    [13] 阚泽忠, 乔正福.四川会理-河口地区褶皱基底的双层结构[J].四川地质学报, 1999, 19(3):204-209.

    Google Scholar

    [14] 尹福光, 孙志明, 任光明, 等.上扬子陆块西南缘早-中元古代造山运动的地质记录[J].地质学报, 2012, 86(12):1917-1932. doi: 10.3969/j.issn.0001-5717.2012.12.005

    CrossRef Google Scholar

    [15] 牟传龙, 林仕良, 余谦.四川会理-会东及邻区中元古代昆阳群沉积特征及演化[J].沉积与特提斯地质, 2000, 20(1):44-50.

    Google Scholar

    [16] 宋彪, 张玉海, 万渝生, 等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评, 2002, 48:26-30.

    Google Scholar

    [17] Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-A homogeneous natural reference material for the ion microprobe UPb analysis of zircon[J].Geostandards and Geoanalytical Research, 2008, 32:247-265. doi: 10.1111/ggr.2008.32.issue-3

    CrossRef Google Scholar

    [18] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [19] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [20] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4):481-492.

    Google Scholar

    [21] Sláma J, Kosler J, Condon D J, et al. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249:1-35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [22] Coleman R G. Ophiolites-Ancient oceanic lithosphere, Berlin, Heidelberg[M].New York:Springer-Verlag, 1977.

    Google Scholar

    [23] El-Sayed M M, Furnes H, Mohamed F H. Geochemical constraints on the tectonomagmatic evolution of the late Precambrian Fawakhir ophiolite, Central Eastern Desert Egypt[J]. African Earth Sci., 1999, 29:515-533. doi: 10.1016/S0899-5362(99)00113-X

    CrossRef Google Scholar

    [24] Floyd P A, Winchester J A. Magma type and tectonic setting discrimination using immobile elements[J]. Earth Planet. Sci. Lett., 1975, 27:211-218. doi: 10.1016/0012-821X(75)90031-X

    CrossRef Google Scholar

    [25] Boynton W V. Geochemistry of the rare earth elements. meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elservier, 1984:63-114.

    Google Scholar

    [26] Sun S, McDonough W F, Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [27] Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton:implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21:577-594. doi: 10.1016/j.gr.2011.07.010

    CrossRef Google Scholar

    [28] 沈渭洲, 高剑锋, 徐士进, 等.四川石棉蛇绿岩的地球化学特征及其构造意义[J].地质论评, 2003, 49(1):17-27.

    Google Scholar

    [29] Hugh R R, Hugh R. Using Geochemical Data:Evaluation, Presentation, Interpretation. England:Longman Scientific & Technical[M]. New York:Wiley & Sons, 1993:1-384

    Google Scholar

    [30] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the NbZr-Y diagram[J]. Chemical Geology, 1986, 56:207-218. doi: 10.1016/0009-2541(86)90004-5

    CrossRef Google Scholar

    [31] Pearce J A. Supra-Subduction zone ophiolites:The search for modern analogues[J]. Geological Society of America Special Papers, 2003:269-294.

    Google Scholar

    [32] 肖庆辉, 李廷栋, 潘桂棠, 等.识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别[J].中国地质, 2016, 43(3):721-737. doi: 10.12029/gc20160303

    CrossRef Google Scholar

    [33] Ishizuka O, Tani K, Reagan M. KIzu-Bonin-Mariana forearc Crust as a modern ophiolite Analogue[J]. Elements, 2014, 10:115-120. doi: 10.2113/gselements.10.2.115

    CrossRef Google Scholar

    [34] Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008:100:14-48. doi: 10.1016/j.lithos.2007.06.016

    CrossRef Google Scholar

    [35] Furnes H, Dilek Y. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites:A global synthesis[J]. Earth-Science Reviews, 2017, 166:1-37. doi: 10.1016/j.earscirev.2017.01.001

    CrossRef Google Scholar

    [36] Dunning G R, Pedersen R B. U-Pb ages of ophiolites and arcrelated plutons of the Norwegian Caledonides:Implications for the development of lapetus[J]. Contributions to Mineralogy and Petrology, 1988, 98:13-23. doi: 10.1007/BF00371904

    CrossRef Google Scholar

    [37] 谢琪, 张宗命".川中微型大陆"与四川盆地形成[J].四川地质学报, 1982, Z1:46-59.

    Google Scholar

    [38] 熊小松, 高锐, 张季生, 等.四川盆地东西陆块中下地壳结构存在差异[J].地球物理学报, 2015, 58(7):2413-2423. doi: 10.6038/cjg20150718

    CrossRef Google Scholar

    [39] 姜继圣.黄陵变质地区的同位素地质年代及地壳演化[J].长春地质学院学报, 1986, 3:1-11.

    Google Scholar

    [40] Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton:Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21:577-594. doi: 10.1016/j.gr.2011.07.010

    CrossRef Google Scholar

    [41] Qiu X F, Ling W L, Liu X M, et al. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 2011, 191:101-119. doi: 10.1016/j.precamres.2011.09.011

    CrossRef Google Scholar

    任光明, 庞维华, 尹福光, 等. 扬子地块西缘格伦维尔造山过程、南华裂谷作用及其成矿效应综合研究报告. 成都地质调查中心, 2014.

    Google Scholar

    四川省地质局第一区测队. 1: 20万会理幅区域地质调查报告. 1970.

    Google Scholar

    阚泽忠, 李振江, 冷政文, 等. 1: 5万关河幅区域地质调查报告. 四川省地质矿产局, 1995.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(804) PDF downloads(19) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint