2017 Vol. 36, No. 8
Article Contents

HOU Xiaoyu, ZHAO Yuanyi, LIU Chunhua. Assessment of potential of the Maniitsoq Ni-Cu deposit in Greenland[J]. Geological Bulletin of China, 2017, 36(8): 1493-1499.
Citation: HOU Xiaoyu, ZHAO Yuanyi, LIU Chunhua. Assessment of potential of the Maniitsoq Ni-Cu deposit in Greenland[J]. Geological Bulletin of China, 2017, 36(8): 1493-1499.

Assessment of potential of the Maniitsoq Ni-Cu deposit in Greenland

More Information
  • The Maniitsoq deposit is located about 160km north of Nuuk, the capital of Greenland. The deposit is a very large highgrade nickel-copper deposit discovered in recent years. The mine owners North American Nickel Company has carried out a series of exploration activities in the deposit, the cumulative drilling has reached 29840m, of which a 74.05m long core at he depth of 268.70~342.75m in MQ-16-117 drill hole has nickel content of 1.08% and copper content of 0.54%. As the Chinese scientists and enterprises are very interested in going abroad to participate in mineral exploration and development of Greenland area, the systematic understanding of geological characteristics of the deposit and resource potential is extremely necessary. The authors comprehensively collected and analyzed the relevant data of the deposit, and compared it with China's Jinchuan nickel ore deposit. The results show that the Maisuoke nickel-copper deposit is a "small rock body forming a large deposit" and a typical representative of the "deep liqua-tion-injection mineralization" ore-forming mechanism. Based on the previous survey data, the authors hold that the metal content of the nickel is 19.5 million tons, which has reached the world class scale, and the Chinese enterprises should pay due attention to this situation.

  • 加载中
  • [1] 聂凤军, 石成龙, 赵元艺, 等.北极圈及邻区金属矿床地质特征、形成作用与找矿潜力[J].中国地质, 2012, 39(4):865-868.

    Google Scholar

    [2] 李九玲, 卢伟, 赵元艺, 等.格陵兰重要金属矿简介及分布规律[J].地质科技情报, 2013, 32(5):18-24.

    Google Scholar

    [3] 卢伟. 格陵兰重要金属矿产成矿规律与找矿方向研究[D]. 中国地质大学(北京)硕士学位论文, 2014.http://cdmd.cnki.com.cn/Article/CDMD-11415-1014238528.htm

    Google Scholar

    [4] North American Nickel Inc. PwC Website Greenland-Taxes on corporate income[DB/OL] (2016-01)[2016-03] http://s1.q4cdn.com/825764637/files/doc_presentations/2016/NAN_Corporate_Presenation_November_2016.pdf.

    Google Scholar

    [5] 李怀渊, 张景训, 江明忠, 等.航空瞬变电磁法系统VTEMplus的应用效果[J].物探与化探, 2016, 40(2):360-364.

    Google Scholar

    [6] North American Nickel Inc.Greenland maniitsoq projects[EB/OL] (2016-01)[2016-03] http://www.northamericannickel.com/English/projects/greenland/maniitsoq/default.aspx. 2016.

    Google Scholar

    [7] 杨日红, 陈秀法, 赵宏军, 等.遥感技术在格陵兰岛西南部费斯肯纳色特一带找矿中的应用[J].地质与勘探, 2013, 49(4):751-757.

    Google Scholar

    [8] Szilas K, Berger A, Kokfelt T F, et al. Geochemistry of the supra-crustal rocks and the associated intrusive TTG suites of the Archaean craton in South-West Greenland and southern West Greenland, 61° 30'-64°N[J]. Danmarks Greenlands Geologiske Undersegelse Rap-port, 2011, 114:88-90.

    Google Scholar

    [9] Larsen L M, Pedersen A K. A minor carbonatite occurrence in south-ern WestGreenland:the Tupertalik intrusion[J]. Rapport Greenlands Geologiske Undersegelse, 1982, 110:3-43.

    Google Scholar

    [10] Garde A A. Post-kinematic diorite intrusions in Archaean base-ment rocks around outer Fiskefjord, southern West Greenland[J]. Bulletin of the Geological Society of Denmark, 1991, 39:167-177.

    Google Scholar

    [11] Garde A A, McDonald I, Dyck B, et al. Searching for giant, ancient impact structures on Earth:The Mesoarchaean Maniitsoq structure, West Greenland[J]. Earth and Planetary Science Letters, 2012, 4:337/338:197-210.

    Google Scholar

    [12] 聂凤军, 张伟波, 曹毅, 等.北极圈及邻区重要矿产资源找矿勘查新进展[J].地质科技情报, 2013, 32(5):1-6.

    Google Scholar

    [13] North American Nickel Inc. Independent Technical Report for the Maniitsoq Nickel-Copper-PGM Project, Greenland[EB/OL] (2016-03)[2017-03-15] http://www.northamericannickel.com/English/projects/greenland/maniitsoq/default.aspx.

    Google Scholar

    [14] Reiners, P W, Nelson B K, Ghiorso M S. Assimilation of felsic crust by basaltic magma:Thermal limits and extents of crustal contamina-tion of mantle-derived magmas[J]. Geology, 1995, 23:563-566. doi: 10.1130/0091-7613(1995)023<0563:AOFCBB>2.3.CO;2

    CrossRef Google Scholar

    [15] Steenfelt A, Garde A A, Moyen J F. Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in West Greenland[J]. Lithos, 2005, 79:207-228. doi: 10.1016/j.lithos.2004.04.054

    CrossRef Google Scholar

    [16] Garde A A, Pattison J, Kokfelt T F, et al. The norite belt in The Mesoarchaean Maniitsoq structure, southern West Greenland:con-duit-type Ni-Cu mineralisation in impact-triggered, mantle-de-rived intrusions[J]. Geological Survey of Denmark and Greenland Bulletin, 2013, 28:45-48.

    Google Scholar

    [17] McKenzie D. O'Nions R K. Partial Melt Distributions from Inver-sion of Rare Earth Element Concentrations[J]. Journal of Petrolo-gy, 1991, 5:1021-1091.

    Google Scholar

    [18] Sun S S, McDonough W F. Chemical and isotopic systematics of oce-anic basalts:implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geo-logical Society (London)Special Publications, 1989, 42:313-345.

    Google Scholar

    [19] Wittig N, Pearson D G, Webb M, et al. Origin of cratonic litho-spheric mantle roots:A geochemical study of peridotites from the North Atlantic Craton, West Greenland[J]. Earth and Planetary Sci-ence Letters, 2008, 274:4-33.

    Google Scholar

    [20] Larsen L M, Rex D C. A review of the 2500Ma span of alkaline-ul-tramafic, potassic and carbonatitic magmatism in West Greenland[J]. Lithos, 1992, 28:367-402. doi: 10.1016/0024-4937(92)90015-Q

    CrossRef Google Scholar

    [21] Wittig N, Webb M, Pearson D G, et al. Formation of the North Atlantic Craton:Timing and mechanisms constrained from ReOs isotope and PGE data of peridotite xenoliths from S.W. Greenland[J]. Chemical Geology, 2010, 276:166-187. doi: 10.1016/j.chemgeo.2010.06.002

    CrossRef Google Scholar

    [22] 汤中立, 焦建刚, 闫海卿, 等.小岩体成(大)矿理论体系[J].中国工程科学, 2015, 17(2):9-15.

    Google Scholar

    [23] 赵增玉, 潘懋, 田甜, 等.固体矿产资源储量估算系统中垂直断面法的实现[J].地质与勘探, 2010, 46(3):547-551.

    Google Scholar

    [24] 朱青凌, 罗周全, 刘晓明, 等.块体模型储量估算原理的应用研究[J].矿冶工程, 2012, 32(6):9-11.

    Google Scholar

    [25] 李俊.固体矿产资源/储量估算方法研究现状及主要方法评价[J].中国非金属矿工业导刊, 2005, 46(2):53-55.

    Google Scholar

    [26] 高强祖, 黄满湘.金川铜镍硫化物矿床成因探讨[J].西部探矿工程, 2006, 6:1-3. doi: 10.3969/j.issn.1004-5716.2006.01.001

    CrossRef Google Scholar

    [27] 高辉, 曹殿华, 范世家.岩浆铜-镍-铂族金属硫化矿床"深部熔离-贯入"成矿作用与模式——加拿大伏伊希湾和中国金川矿床地质特征对比[J].地质通报, 2009, 28(6):795-803.

    Google Scholar

    [28] 焦建刚, 汤中立, 闫海卿, 等.金川铜镍硫化物矿床中富铜矿石铂族元素特征及矿床成因[J].西北地质, 2012, 45(4):244-249.

    Google Scholar

    [29] 王瑞廷, 毛景文, 赫英, 等.金川超大型铜镍硫化物矿床的铂族元素地球化学特征[J].大地构造与成矿学, 2004, 28(3):281-284.

    Google Scholar

    [30] 田毓龙, 包国忠, 汤中立, 等.金川铜镍硫化物矿床岩浆通道型矿体地质地球化学特征[J].地质学报, 2009, 83(10):1515-1518. doi: 10.3321/j.issn:0001-5717.2009.10.016

    CrossRef Google Scholar

    [31] 罗照华, 马拉库舍夫A A, 潘妮娅H A, 等.铜镍硫化物矿床的成因——以诺里尔斯克(俄罗斯)和金川(中国)为例[J].矿床地质, 2000, 19(4):336-338.

    Google Scholar

    [32] 汤中立.中国的小岩体岩浆矿床[J].中国工程科学, 2002, 4(6):9-12.

    Google Scholar

    [33] 杨胜洪, 陈江峰, 屈文俊, 等.金川铜镍硫化物矿床的Re-Os年龄及意义[J].地球化学, 2007, 36(1):30-35.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(898) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint