2017 Vol. 36, No. 8
Article Contents

KOU Caihua, LIU Yanxue, LI Tingdong, HUANG He, ZHANG Heng. LA-ICP-MS U-Pb dating and Hf isotopes of detrital zircon grains from siltstone of Danzhou Group in northern Guangxi and their geological significance[J]. Geological Bulletin of China, 2017, 36(8): 1393-1406.
Citation: KOU Caihua, LIU Yanxue, LI Tingdong, HUANG He, ZHANG Heng. LA-ICP-MS U-Pb dating and Hf isotopes of detrital zircon grains from siltstone of Danzhou Group in northern Guangxi and their geological significance[J]. Geological Bulletin of China, 2017, 36(8): 1393-1406.

LA-ICP-MS U-Pb dating and Hf isotopes of detrital zircon grains from siltstone of Danzhou Group in northern Guangxi and their geological significance

  • This paper reports LA-ICP-MS U-Pb dating and Hf isotopes for detrital zircon grains of siltstone from Gongdong For-mation at the top of the Danzhou Group. The majority of zircon grains are transparent, euhedral and prismatic crystals with oscillato-ry zoning in CL images and have high Th/U ratios of 0.2~2.4, indicating an igneous origin for the zircon. The 206Pb/238Pb age distri-butions for the detrital zircon grains mainly range from 730Ma to 769Ma and 771Ma to 850Ma, and εHf(t)and two-stage Hf model ages (TDM2) range from -18.4 to 11.4 and from 1020Ma to 2812Ma, respectively. Moreover, there are some detrital zircon grains with relatively older ages with 206Pb/238Pb ages from 1910Ma to 3140Ma, and εHf(t)and TDM2 from -13.6~3.4 and 2740~3635Ma, respec-tively. Combined with previous researches, the authors infer that the maximum depositional age of the Gongdong Formation from Danzhou Group is 706±10Ma. The source region was predominated by Neoproterozoic magmatic rocks from Yangtze Block (ca. 750~830Ma) with the mixture of minor Archean magmatic rocks. There was developed the Greenville movement in South China re-sulting from the assembly of Rodinia supercontinent. In addition, on the basis of the εHf(t)and TDM2 data of the detrital zircon grains, the authors hold the existence of three stages for the crust growth in the study area:① 3.64Ga to 3.25Ga, with the juvenile crust at 3.64Ga; ② 2.98Ga to 2.37Ga; ③ 2.19Ga to 1.28Ga.

  • 加载中
  • [1] 夏斌.广西龙胜元古代二种不同成因蛇绿岩岩石地球化学及侵位方式研究[J].南京大学学报, 1984, 3:554-566.

    Google Scholar

    [2] 郭令智, 卢华复, 施央申, 等.江南中、新元古代岛弧的运动学和动力学[J].高校地质学报, 1996, 2(1):1-13.

    Google Scholar

    [3] Li X H. U-Pb zircon ages of granites from the southern margin of the Yangtze Block:timing of Neoproterozoic Jinning:Orogeny in SE China and implications for Rodinia Assembly[J]. Precambrian Research, 1999, 97(1):43-57.

    Google Scholar

    [4] Zhao G C, Cawood P A. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block; implications for Neoproterozoic collision-related assembly of the South China Craton[J]. American Journal of Science, 1999, 299(4):309-339. doi: 10.2475/ajs.299.4.309

    CrossRef Google Scholar

    [5] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia:did it start with a mantle plume beneath South China?[J]. Earth and Plane-tary Science Letters, 1999, 173:171-181. doi: 10.1016/S0012-821X(99)00240-X

    CrossRef Google Scholar

    [6] Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozo-ic syn-rift magmatism in the Yangtze Craton, South China and cor-relations with other continents:evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 2003, 122:85-109. doi: 10.1016/S0301-9268(02)00208-5

    CrossRef Google Scholar

    [7] Li X H, Li Z X, Zhou H W, et al. SHRIMP U-Pb zircon age, geo-chemistry and Nd isotope of the Guandaoshan pluton in SW Sich-uan:Petrogenesis and tectonic significance[J]. Science in China (Se-ries D), 2003, 46:74-83. doi: 10.1360/03yd9007

    CrossRef Google Scholar

    [8] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China:constraints from SHRIMP UPb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxi-wu volcanic rocks[J]. Precambrian Research, 2009, 174(1):117-128.

    Google Scholar

    [9] Li X H, Zhu W G, Zhong H, et al. The Tongde Picritic Dikes in the Western Yangtze Block:Evidence for Ca. 800Ma Mantle Plume Magmatism in South China during the Breakup of Rodinia[J]. The Journal of Geology, 2010, 118(5):509-522. doi: 10.1086/655113

    CrossRef Google Scholar

    [10] Wang X L, Zhao G C, Zhou J C, et al. Geochronology and Hf iso-topes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China:Implications for the Neoproterozoic tectonic evolu-tion of the eastern Jiangnan orogen[J]. Gondwana Research, 2008, 14:355-367. doi: 10.1016/j.gr.2008.03.001

    CrossRef Google Scholar

    [11] Wang X L, Zhou J C, Griffin W L, et al. Geochemical zonation across a Neoproterozoic orogenic belt:Isotopic evidence from gran-itoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 2014, 242:154-171. doi: 10.1016/j.precamres.2013.12.023

    CrossRef Google Scholar

    [12] Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arcderived crust:Geochemical evidence from Neoproterozoic volca-nic and granitic rocks in the Jiangnan Orogen, South China[J]. Pre-cambrian Research, 2008, 163:351-383. doi: 10.1016/j.precamres.2008.01.004

    CrossRef Google Scholar

    [13] Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 2006, 146:179-212. doi: 10.1016/j.precamres.2006.01.012

    CrossRef Google Scholar

    [14] Zhang S B, Zheng Y F, Zhao Z F, et al. Neoproterozoic anatexis of Archean lithosphere:Geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China[J]. Pre-cambrian Research, 2008, 163:210-238. doi: 10.1016/j.precamres.2007.12.003

    CrossRef Google Scholar

    [15] Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South Chi-na:Coeval arc magmatism and sedimentation[J]. Precambrian Re-search, 2009, 170:27-42. doi: 10.1016/j.precamres.2008.11.002

    CrossRef Google Scholar

    [16] Faure M, Shu L S, Wang B, et al. Intracontinental subduction:a pos-sible mechanism for the Early Palaeozoic Orogen of SE China[J]. Terra Nova, 2009, 21(5):360-368. doi: 10.1111/ter.2009.21.issue-5

    CrossRef Google Scholar

    [17] Shu L S, Faure M, Yu J H, et al. Geochronological and geochemi-cal features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Re-search, 2011, 187:263-276. doi: 10.1016/j.precamres.2011.03.003

    CrossRef Google Scholar

    [18] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochro-nology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze and Cathaysia blocks[J]. Precan-brian Research, 2007, 159:117-131.

    Google Scholar

    [19] 高林志, 戴传固, 刘燕学, 等.黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J].地质通报, 2010, 29:1259-1267. doi: 10.3969/j.issn.1671-2552.2010.09.001

    CrossRef Google Scholar

    [20] 董宝林.丹洲群岩相特征及有关问题的讨论[J].广西地质, 1993, 6:33-38.

    Google Scholar

    [21] 李献华.广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义[J].地球化学, 1999, 28:1-9. doi: 10.3321/j.issn:0379-1726.1999.01.001

    CrossRef Google Scholar

    [22] 高林志, 陆济璞, 丁孝忠, 等.桂北地区新元古代地层凝灰岩锆石U-Pb年龄及地质意义[J].中国地质, 2013, 40:1443-1452. doi: 10.3969/j.issn.1000-3657.2013.05.009

    CrossRef Google Scholar

    [23] Wang X C, Li X H, Li Z X, et al. Episodic Precambrian crust growth:Evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precambrian Research, 2012, 222/223:386-403. doi: 10.1016/j.precamres.2011.06.001

    CrossRef Google Scholar

    [24] Wang W, Zhou M F. Sedimentary records of the Yangtze Block (South China) and their correlation with equivalent Neoproterozo-ic sequences on adjacent continents[J]. Sedimentary Geology, 2012, 265/266:126-142. doi: 10.1016/j.sedgeo.2012.04.003

    CrossRef Google Scholar

    [25] 杨菲, 汪正江, 王剑, 等.华南西部新元古代中期沉积盆地性质及其动力学分析——来自桂北丹洲群的沉积学制约[J].地质论评, 2012, 58:854-864. doi: 10.3969/j.issn.0371-5736.2012.05.007

    CrossRef Google Scholar

    [26] 汪正江, 许效松, 杜秋定, 等.南华冰期的底界讨论:来自沉积学与同位素年代学证据[J].地球科学进展, 2013, 28:477-489. doi: 10.11867/j.issn.1001-8166.2013.04.0477

    CrossRef Google Scholar

    [27] 张启锐.关于南华系底界年龄780Ma数值的讨论[J].地层学杂志, 2014, 38:336-339.

    Google Scholar

    [28] Hawkesworth C J, Kemp A I S. Using hafnium and oxygen iso-topes in zircons to unravel the record of crustal evolution[J]. Chem-ical Geology, 2006, 226:144-162. doi: 10.1016/j.chemgeo.2005.09.018

    CrossRef Google Scholar

    [29] Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(9):2660-2673. doi: 10.1016/j.gca.2009.02.007

    CrossRef Google Scholar

    [30] Morton A C, Hitchen K, Fanning C M, et al. Detrital zircon age constraints on the provenance of sandstones on Hatton Bank and Edoras Bank, NE Atlantic[J]. Journal of the Geological Society, London, 2009, 166:137-146. doi: 10.1144/0016-76492007-179

    CrossRef Google Scholar

    [31] Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust[J]. Journal of the Geological Society, 2010, 167(2):229-248. doi: 10.1144/0016-76492009-072

    CrossRef Google Scholar

    [32] Wan Y S, Liu D Y, Wang W, et al. Provenance of Meso-to Neo-proterozoic cover sediments at the Ming Tombs, Beijing, North China Craton:An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry[J]. Gondwana Research, 2011, 20(1):219-242. doi: 10.1016/j.gr.2011.02.009

    CrossRef Google Scholar

    [33] 葛文春, 李献华, 李正祥, 等.龙胜地区镁铁质侵入体:年龄及其地质意义[J].地质科学, 2011, 36(1):112-118.

    Google Scholar

    [34] 胡受奚, 叶瑛.对"华夏古陆"、"华夏地块"及"扬子-华夏古陆统一体"等观点的质疑[J].高校地质学报, 2006, 12(4):432-439.

    Google Scholar

    [35] 薛怀民, 马芳, 宋永勤, 等.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J].岩石学报, 2010, 26(11):3215-3244.

    Google Scholar

    [36] 舒良树.华南构造演化的基本特征[J].地质通报, 2012, 31(7):1035-1053.

    Google Scholar

    [37] Li Z X, Zhang L H, Powell C M. South China in Rodinia:part of the missing link between Australia-East Antarctica and Lauren-tia?[J]. Geology, 1995, 23(5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2

    CrossRef Google Scholar

    [38] Zhong J, Chen Y J, Pirajno F. Geology, geochemistry and tectonic settings of the molybdenum deposits in South China:A review[J]. Ore Geology Review, 2017, 81(2):829-855.

    Google Scholar

    [39] 郭令智, 施央申, 马瑞士. 华南大地构造格架和地壳演化[C]//26界国际地质大会论文集(1). 北京: 地质出版社, 1980: 109-116.

    Google Scholar

    [40] Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Re-cycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [41] Liu Y s, Hu Z C, Gao S, et al. In situ analysis of major and trace el-ements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [42] Ludwig K R. User'sManual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003.

    Google Scholar

    [43] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025

    CrossRef Google Scholar

    [44] Elhlou S, Belousova E, Griffin W L, et al. Trace element and isoto-pic composition of GJ-red zircon standard by laser ablation[J]. Geo-chimica et Cosmochimica Acta, 2006, 70(18):A158.

    Google Scholar

    [45] Dhuime B, Hawkesworth C, Cawood P. When Continents Formed[J]. Science, 2011, 331(6014):154-155. doi: 10.1126/science.1201245

    CrossRef Google Scholar

    [46] Griffin W L, Pearson N, Belousova E, et al. The Hf isotope compo-sition of cratonic mantle:LA-MC-ICPMS analysis of zircon mega-crysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [47] 周汉文, 李献华, 王汉荣, 等.广西鹰扬关群基性火山岩的锆石U-Pb年龄及其地质意义[J].地质论评, 2002, 48:22-25.

    Google Scholar

    [48] Wang J, Li X H, Duan T Z, et al. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China[J]. Chinese Sci-ence Bulletin, 2013, 48:1663-1669.

    Google Scholar

    [49] 王剑, 曾昭光, 陈文西, 等.华南新元古代裂谷系沉积超覆作用及其开启年龄新证据[J].沉积与特提斯地质, 2006, 26:1-7. doi: 10.3969/j.issn.1009-3850.2006.01.001

    CrossRef Google Scholar

    [50] Zhang C L, Li H K, Santosh M. Revisiting the tectonic evolution of South China:interaction between the Rodinia superplume and plate subduction?[J]. Terra Nova, 2013, 25:212-220. doi: 10.1111/ter.2013.25.issue-3

    CrossRef Google Scholar

    [51] Zhang Q R, Li X H, Feng L J, et al. A New Age Constraint on the Onset of the Neoproterozoic Glaciations in the Yangtze Platform, South China[J]. The Journal of Geology, 2008, 116:423-429. doi: 10.1086/589312

    CrossRef Google Scholar

    [52] Lan Z W, Li X H, Chen Z Q, et al. Diagenetic xenotime age con-straints on the Sanjiaotang Formation, Luoyu Group, southern mar-gin of the North China Craton:Implications for regional strati-graphic correlation and early evolution of eukaryotes[J]. Precambri-an Research, 2014, 251:21-32. doi: 10.1016/j.precamres.2014.06.012

    CrossRef Google Scholar

    [53] Shields-Zhou G A, Porter S, Halverson G P. A New Rock-Based Definition for the Cryogenian Period (Circa 720-635Ma)[J]. Epi-sodes, 2016, 39, 1:3-8.

    Google Scholar

    [54] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:A test against a Colo-rado Plateau Mesozoic database[J]. Earth and Planetary Science Let-ters, 2009, 288:115-125. doi: 10.1016/j.epsl.2009.09.013

    CrossRef Google Scholar

    [55] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1):51-67.

    Google Scholar

    [56] Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South Chi-na:Coeval arc magmatism and sedimentation[J]. Precambrian Re-search, 2009, 170:27-42. doi: 10.1016/j.precamres.2008.11.002

    CrossRef Google Scholar

    [57] Zhou J C, Wang X L, Qiu J S, et al. Geochemistry of Meso-and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China:Arc or plume magmatism?[J]. Geochemical Journal, 2004, 38:139-152. doi: 10.2343/geochemj.38.139

    CrossRef Google Scholar

    [58] Yan Q R, Hanson A D, Wang Z Q, et al. Neoproterozoic subduc-tion and rifting on the northern margin of the Yangtze Plate, Chi-na:implications for Rodinia reconstruction[J]. International Geolo-gy Review, 2004, 46(9):817-832. doi: 10.2747/0020-6814.46.9.817

    CrossRef Google Scholar

    [59] Wang X L, Zhou J C, Qiu J S, et al. Geochemistry of the Mesoto Neoproterozoic basic-acid rocks from Hunan Province, South China:implications for the evolution of the western Jiangnan oro-gen[J]. Precambrian Research, 2004, 135:79-103. doi: 10.1016/j.precamres.2004.07.006

    CrossRef Google Scholar

    [60] Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from North-ern Guangxi, South China:Implications for tectonic evolution[J]. Precambrian Research, 2006, 145:111-130. doi: 10.1016/j.precamres.2005.11.014

    CrossRef Google Scholar

    [61] Yao J L, Shu L S, Santosh M, et al. Neoproterozoic arc-related mafic-ultramafic rocks and syn-collision granite from the western segment of the Jiangnan Orogen, South China:Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2014, 243:39-62. doi: 10.1016/j.precamres.2013.12.027

    CrossRef Google Scholar

    [62] 张春红, 范蔚茗, 王岳军, 等.湘西隘口新元古代基性-超基性岩墙年代学化学特征:岩石成因及其构造意义[J].大地构造与成矿学, 2009, 33(2):283-293.

    Google Scholar

    [63] 周继彬. 桂北-湘西新元古代镁铁质岩的形成时代和成因——对Rodinia超大陆裂解的响应[D]. 中国科学院广州地球化学研究所博士学位论文, 2006: 1-81.http://cdmd.cnki.com.cn/Article/CDMD-80165-2006106394.htm

    Google Scholar

    [64] Zhou J B, Li X H, Ge W C, et al. Age and origin of middle Neo-proterozoic mafic magmatism in southern Yangtze Block and rele-vance to the break-up of Rodinia[J]. Gondwana Research, 2007, 12:184-197. doi: 10.1016/j.gr.2006.10.011

    CrossRef Google Scholar

    [65] Mcmenamin M A S, Mcmenamin D L S. The emergence of Ani-mals:the Canbrian Breakthrough[M]. New York:Columbia Uni-versity Press, 1990:1-12.

    Google Scholar

    [66] Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out[J]. Science, 1991, 252(5011):1409-1412. doi: 10.1126/science.252.5011.1409

    CrossRef Google Scholar

    [67] Condie K C. Breakup of a Paleopreoterozoic supercontinent[J]. Gondwana Research, 2002, 5:41-43. doi: 10.1016/S1342-937X(05)70886-8

    CrossRef Google Scholar

    [68] Druschke P, Hanson A D, Yan Q R, et al. Stratigraphic and U-Pb SHRIMP Detrital Zircon Evidence for a Neoproterozoic Conti-nental Arc, Central China:Rodinia Implications[J]. The Journal of Geology, 2006, 114(5):627-636. doi: 10.1086/506162

    CrossRef Google Scholar

    [69] Wu L, Jia D, Li H B, et al. Provenance of detrital zircons from the Late Neoproterozoic to Ordovician sandstones of South China:Im-plications for its continental affinity[J]. Geological Magazine, 2010, 147(6):974-980. doi: 10.1017/S0016756810000725

    CrossRef Google Scholar

    [70] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in west-ern South China and relationship to the assembly of Rodinia[J]. Pre-cambrian Research, 2006, 151:79-100. doi: 10.1016/j.precamres.2006.08.002

    CrossRef Google Scholar

    [71] Ye M F, Li X H, Li W X, et al. SHRIMP zircon U-Pb geochro-nological and whole-rock geochemical evidence for an early Neo-proterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block[J]. Gondwana Research, 2007, 12:144-156. doi: 10.1016/j.gr.2006.09.001

    CrossRef Google Scholar

    [72] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in south China:New SHRIMP U-Pb zircon results and implica-tions for the configuration of Rodinia[J]. Geology, 2002, 30(2):163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2

    CrossRef Google Scholar

    [73] Li Z X, Wartho J A, Occhipinti S, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon prove-nance constraints[J]. Precambrian Research, 2007, 159:79-94. doi: 10.1016/j.precamres.2007.05.003

    CrossRef Google Scholar

    [74] 水涛.中国东南大陆基底构造格局[J].中国科学(D辑), 1987, 4:414-421.

    Google Scholar

    [75] 李江海, 穆剑.我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约[J].地质科学, 1999, 34(3):259-272.

    Google Scholar

    [76] Rogers J J W, Santosh M. Configuration of Columbia, a Mesopro-terozoic supercontinent[J]. Gondwana Research, 2002, 5:5-22. doi: 10.1016/S1342-937X(05)70883-2

    CrossRef Google Scholar

    [77] Rogers J J W, Santosh M. Supercontinent in earth history[J]. Gond-wana Research, 2003, 6:357-368. doi: 10.1016/S1342-937X(05)70993-X

    CrossRef Google Scholar

    [78] Zhao G C, Sun M, Wilde S A. Review of global 2.1-1.8Ga oro-gens:implications for a Pre-Rodinia supercontinent[J]. Earth-Sci-ence Reviews, 2002, 59:125-162. doi: 10.1016/S0012-8252(02)00073-9

    CrossRef Google Scholar

    [79] Peng M, Wu Y B, Gao S, et al. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous Atype granites from the Kongling terrain, Yangtze Block:Constraints on petrogenesis and geologic implications[J]. Gondwana Research, 2012, 22:140-151. doi: 10.1016/j.gr.2011.08.012

    CrossRef Google Scholar

    [80] 第五春荣, 孙勇, 王倩华.北克拉通地壳生长和演化:来自现代河流碎屑锆石Hf同位素组成的启示[J].岩石学报, 2012, 28(11):3520-3530.

    Google Scholar

    [81] Wang C, Campbell I H, Allen C M, et al. Rate of growth of the preserved North American continental crust:Evidence from Hf and O isotopes in Mississippi detrital zircons[J]. Geochimica et Cosmo-chimica Acta, 2009, 73(3):712-728. doi: 10.1016/j.gca.2008.10.037

    CrossRef Google Scholar

    [82] Belousova E A, Kostitsyn Y A, Griffin W L, et al. The growth of the continental crust:Constraints from zircon Hf-isotope data[J]. Lithos, 2010, 119:457-466. doi: 10.1016/j.lithos.2010.07.024

    CrossRef Google Scholar

    [83] Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dable orogen[J]. Chemical Geology, 2006, 231:135-158. doi: 10.1016/j.chemgeo.2006.01.005

    CrossRef Google Scholar

    [84] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220.

    Google Scholar

    [85] Ma X X, Shu L S, Meert J G, et al. The Paleozoic evolution of Central Tianshan:Geochemical and geochronological evidence[J]. Gondwana Research, 2014, 25(2):797-819. doi: 10.1016/j.gr.2013.05.015

    CrossRef Google Scholar

    广西壮族自治区地质矿产局. 1: 20万三江幅和溆浦幅. 1985.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(790) PDF downloads(6) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint