2017 Vol. 36, No. 7
Article Contents

ZENG Wentao, LIU Guichun, FENG Qinglai, ZHAO Tianyu, YU Saiying, DENG Renhong, MO Xiong. The relationship between Lincang block and provenance of Nanduan Formation:Evidence of detrital zircon U-Pb dating from metasandstone of Devonian-Carboniferous Nanduan Formation[J]. Geological Bulletin of China, 2017, 36(7): 1175-1187.
Citation: ZENG Wentao, LIU Guichun, FENG Qinglai, ZHAO Tianyu, YU Saiying, DENG Renhong, MO Xiong. The relationship between Lincang block and provenance of Nanduan Formation:Evidence of detrital zircon U-Pb dating from metasandstone of Devonian-Carboniferous Nanduan Formation[J]. Geological Bulletin of China, 2017, 36(7): 1175-1187.

The relationship between Lincang block and provenance of Nanduan Formation:Evidence of detrital zircon U-Pb dating from metasandstone of Devonian-Carboniferous Nanduan Formation

More Information
  • U-Pb ages of detrital zircons of Devonian-Carboniferous Nanduan Formation from Lincang block define three distinctive age peaks in older Grenvillian (1100~1300Ma), younger Grenvillian (900~980Ma) and Pan-African (530~680Ma), and two subordinate group in 1550~1730Ma and 2350~2630Ma, suggesting that the provenance of sediments had multi-source and complex characteristics. The age spectrum is obviously different from detrital zircon age spectrum of the Devonian-Carboniferous sediments of Simao block, which indicates that the sediments of Nanduan Formation came from East Ganwana supercontinent, and the result is indicated by paleobiology which shows a genetic relationship between East Ganwana and paleo-Tethys in southwest Yunnan.

  • 加载中
  • [1] Deng J, Wang Q, Li G, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437. doi: 10.1016/j.gr.2013.08.002

    CrossRef Google Scholar

    [2] 刘本培, 冯庆来, 方念乔, 等.滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化[J].地球科学, 1993, 18(5): 529-539.

    Google Scholar

    [3] 张虎, 冯庆来, 曾文涛, 等.滇西保山地区晚寒武世火山岩的发现及其构造意义[J].地质通报, 2015, 34(12): 2280-2291. doi: 10.3969/j.issn.1671-2552.2015.12.014

    CrossRef Google Scholar

    [4] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [5] 金小赤, 王义昭, 谢广连.滇西昌宁-孟连带的地层格架[J].地质通报, 2002, 21(6): 315-321.

    Google Scholar

    [6] 李才, 谢尧武, 董永胜, 等.北澜沧江带的性质——是冈瓦纳板块与扬子板块的界线吗?[J].地质通报, 2009, 28(12): 1711-1719. doi: 10.3969/j.issn.1671-2552.2009.12.004

    CrossRef Google Scholar

    [7] 王保弟, 王立全, 潘桂棠, 等.昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义[J].科学通报, 2013, 58(4): 344-354.

    Google Scholar

    [8] 冯庆来, 刘本培, 叶玫, 等.滇西南南段组和拉巴群地质时代及构造背景[J].地层学杂志, 1996, 20(3): 183-189.

    Google Scholar

    [9] 段向东, 李静, 曾文涛, 等.昌宁-孟连带中段干龙塘构造混杂岩的发现[J].云南地质, 2006, 25(1): 53-62.

    Google Scholar

    [10] 吴浩若, 杜越.滇西昌宁-孟连带南部地层地质问题[J].地层学杂志, 1994, 18(3): 221-227.

    Google Scholar

    [11] 方宗杰, 周志澄, 林敏基.关于滇西地质的若干新认识[J].科学通报, 1990, (5): 363-365.

    Google Scholar

    [12] 贾进华.滇西南昌宁-孟连带南段群沉积特征及其构造古地理意义──兼论临沧地体的性质[J].岩相古地理, 1994, 14(4): 42-48.

    Google Scholar

    [13] 贾进华.滇西南昌宁-孟连带南皮河群地层、沉积特征及其构造古地理意义[J].岩相古地理, 1995, (4): 21-27.

    Google Scholar

    [14] 从柏林, 吴根耀, 张旗, 等.中国滇西古特提斯构造带岩石大地构造演化[J].中国科学(B辑), 1993, 23(11): 1201-1207.

    Google Scholar

    [15] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [16] Dong Y, Liu X, Neubauer F, et al. Timing of Paleozoic amalgamation between the North China and South China Blocks: Evidence from detrital zircon U-Pb ages[J]. Tectonophysics. 2013, 586: 173-191. doi: 10.1016/j.tecto.2012.11.018

    CrossRef Google Scholar

    [17] 王丽娟, 于津海, O Reilly S Y, 等.华夏南部可能存在Grenville期造山作用:来自基底变质岩中锆石U-Pb定年及Lu-Hf同位素信息[J].科学通报, 2008, 53(14): 1680-1692. doi: 10.3321/j.issn:0023-074X.2008.14.009

    CrossRef Google Scholar

    [18] 邹和平, 杜晓东, 劳妙姬, 等.广西大明山地块寒武系碎屑锆石U-Pb年龄及其构造意义[J].地质学报, 2014, (10): 1800-1819.

    Google Scholar

    [19] 王明亮, 张加桂, 汪新文.滇西哀牢山构造带变质岩系LA-ICPMS锆石U-Pb年龄及其地质意义[J].地质通报, 2016, 35(5): 738-749.

    Google Scholar

    [20] 杨森, 裴先治, 李瑞保, 等.东昆仑东段布青山地区上二叠统格曲组物源分析及其构造意义[J].地质通报, 2016, 35(5): 674-686.

    Google Scholar

    [21] Wang Y, Zhang A, Fan W, et al. Petrogenesis of late Triassic postcollisional basaltic rocks of the Lancangjiang tectonic zone, southwest China, and tectonic implications for the evolution of the eastern Paleotethys[J]. Geochronological and Geochemical Constraints, 2010, 120: 529-546.

    Google Scholar

    [22] Hu Z, Gao S, Liu Y, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. ournal of Analytical Atomic Spectrometry, 2008, 23(8): 1093-1101. doi: 10.1039/b804760j

    CrossRef Google Scholar

    [23] Liu Y, Gao S, Hu Z, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [24] Wiedenbeck M, Allé P, Corfu F, et al. Three natrual zircon stadards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/ggr.1995.19.issue-1

    CrossRef Google Scholar

    [25] Liu Y, Zong K, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247 (1): 133-153.

    Google Scholar

    [26] Ludwig K R. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel[M]. California: Berkeley Geochronology Center, 2003.

    Google Scholar

    [27] Hoskin P W, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [28] Lehmann B, Zhao X, Zhou M, et al. Mid-Silurian back-arc spreading at the northeastern margin of Gondwana: The Dapingzhang dacite-hosted massive sulfide deposit, Lancangjiang zone, southwestern Yunnan, China[J]. Gondwana Research, 2013, 24(2): 648-663. doi: 10.1016/j.gr.2012.12.018

    CrossRef Google Scholar

    [29] 毛晓长, 王立全, 李冰, 等.云县-景谷火山弧带大中河晚志留世火山岩的发现及其地质意义[J].岩石学报, 2012, 28(5): 1517-1528.

    Google Scholar

    [30] Tran H T, Zaw K, Halpin J A, et al. The Tam Ky-Phuoc Son Shear Zone in central Vietnam: Tectonic and metallogenic implications[J]. Gondwana Research, 2014, 26(1): 144-146. doi: 10.1016/j.gr.2013.04.008

    CrossRef Google Scholar

    [31] Roger F, Leloup P H, Jolivet M, et al. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology[J]. Tectonophysics, 2000, 321(4): 449-466. doi: 10.1016/S0040-1951(00)00085-8

    CrossRef Google Scholar

    [32] Wang Y, Fan W, Zhao G, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 2007, 12(4): 404-416. doi: 10.1016/j.gr.2006.10.003

    CrossRef Google Scholar

    [33] 舒良树, 于津海, 贾东, 等.华南东段早古生代造山带研究[J].地质通报, 2008, 27(10): 1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001

    CrossRef Google Scholar

    [34] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5/6): 772-793.

    Google Scholar

    [35] Wang Q, Deng J, Li C, et al. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons[J]. Gondwana Research, 2014, 26(2): 438-448. doi: 10.1016/j.gr.2013.10.002

    CrossRef Google Scholar

    [36] Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth Science Reviews, 2007, 82(3): 217-256.

    Google Scholar

    [37] Usuki T, Lan C, Wang K, et al. Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U-Pb ages and Hf isotopes of detrital zircons[J]. Tectonophysics, 2013, 586: 145-159. doi: 10.1016/j.tecto.2012.11.010

    CrossRef Google Scholar

    [38] Nie X, Feng Q, Qian X, et al. Magmatic record of Prototethyan evolution in SW Yunnan, China: Geochemical, zircon U-Pb geochronological and Lu-Hf isotopic evidence from the Huimin metavolcanic rocks in the southern Lancangjiang zone[J]. Gondwana Research, 2015, 28(2): 757-768. doi: 10.1016/j.gr.2014.05.011

    CrossRef Google Scholar

    [39] Xing X, Wang Y, Cawood P A, et al. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan[J]. International Journal of Earth Sciences, 2017, 106(5): 1469-1486. doi: 10.1007/s00531-015-1282-z

    CrossRef Google Scholar

    [40] Zhao T Y, Feng Q L, Metcalfe I, et al. Detrital zircon U-Pb-Hf isotopes and provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan Blocks, SW China: Implications for Proto-Tethys and Paleo-Tethys evolution and Gondwana recon-struction[J]. Gondwana Research, 2017, in press.

    Google Scholar

    [41] Yu J, O Reilly S Y, Wang L, et al. Where was South China in the Rodinia supercontinent?[J]. Precambrian Research, 2008, 164(1/2): 1-15.

    Google Scholar

    [42] Cawood P A. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic[J]. Earth Science Reviews, 2005, 69 (3/4): 249-279.

    Google Scholar

    [43] Ding H, Zhang Z, Dong X, et al. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 2015, 27(4): 1616-1629. doi: 10.1016/j.gr.2014.02.003

    CrossRef Google Scholar

    [44] Dong M, Dong G, Mo X, et al. Geochemistry, zircon U-Pb geochronology and Hf isotopes of granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic evolution along the Gondwana margin[J]. Lithos, 2013, 179: 36-47. doi: 10.1016/j.lithos.2013.05.011

    CrossRef Google Scholar

    [45] Hu P, Zhai Q, Jahn B, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 2015, 220/223: 318-338. doi: 10.1016/j.lithos.2014.12.020

    CrossRef Google Scholar

    [46] Wang X, Zhang J, Santosh M, et al. Andean-type orogeny in the Himalayas of south Tibet: implications for early Paleozoic tectonics along the Indian margin of Gondwana[J]. Lithos, 2012, 154: 248-262. doi: 10.1016/j.lithos.2012.07.011

    CrossRef Google Scholar

    [47] Zhao S, Lai S, Qin J, et al. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopic compositions of the Pinghe pluton, Southwest China: implications for the evolution of the early Palaeozoic Proto-Tethys in Southeast Asia[J]. International Geology Review. 2014, 56(7): 885-904. doi: 10.1080/00206814.2014.905998

    CrossRef Google Scholar

    [48] Zhu D, Zhao Z, Niu Y, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328: 290-308. doi: 10.1016/j.chemgeo.2011.12.024

    CrossRef Google Scholar

    [49] Li D, Chen Y, Hou K, et al. Detrital zircon record of Paleozoic and Mesozoic meta-sedimentary strata in the eastern part of the Baoshan block: Implications of their provenance and the tectonic evolution of the southeastern margin of the Tibetan plateau[J]. Lithos, 2015, 227: 194-204. doi: 10.1016/j.lithos.2015.04.009

    CrossRef Google Scholar

    [50] Li D, Luo Z, Chen Y, et al. Deciphering the origin of the Tengchong block, west Yunnan: Evidence from detrital zircon U-Pb ages and Hf isotopes of Carboniferous strata[J]. Tectonophysics, 2014, 614: 66-77. doi: 10.1016/j.tecto.2013.12.023

    CrossRef Google Scholar

    [51] Cawood P A, Johnson M R, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1): 70-84.

    Google Scholar

    [52] Boger S D, Wilson C, Fanning C M. Early Paleozoic tectonism within the East Antarctic craton: The final suture between east and west Gondwana?[J]. Geology, 2001, 29(5): 463-466. doi: 10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2

    CrossRef Google Scholar

    [53] Fitzsimons I. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens[J]. Geology, 2000, 28 (10): 879-882. doi: 10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2

    CrossRef Google Scholar

    [54] Cawood P A, Korsch R J. Assembling Australia: Proterozoic building of a continent[J]. Precambrian Research, 2008, 166(1/4): 1-35.

    Google Scholar

    [55] Zhu D C, Zhao Z D, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730. doi: 10.1130/G31895.1

    CrossRef Google Scholar

    [56] Zhu D C, Zhao Z D, Niu Y L. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39:727-730. doi: 10.1130/G31895.1

    CrossRef Google Scholar

    云南省第五地质大队. 1: 20万孟连幅区域地质调查报告. 1982.

    Google Scholar

    云南省地质调查院. 1: 25万澜沧县、勐海县幅区域地质调查报告. 2013.

    Google Scholar

    云南省地质调查院. 1: 25万凤庆县幅区域地质调查报告. 2008.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1431) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint