2017 Vol. 36, No. 5
Article Contents

ZHOU Dai, LONG Wenguo, WANG Lei, JIA Xiaohui. Geochronology and Lu-Hf isotope of Early Paleozoic Zhuya-Shiban gabbros in Yunkai terrane, South China[J]. Geological Bulletin of China, 2017, 36(5): 726-737.
Citation: ZHOU Dai, LONG Wenguo, WANG Lei, JIA Xiaohui. Geochronology and Lu-Hf isotope of Early Paleozoic Zhuya-Shiban gabbros in Yunkai terrane, South China[J]. Geological Bulletin of China, 2017, 36(5): 726-737.

Geochronology and Lu-Hf isotope of Early Paleozoic Zhuya-Shiban gabbros in Yunkai terrane, South China

  • Early Paleozoic mafic intrusive rocks in Yunkai terrane commonly occur as small stocks that intruded into pre-Cambrian strata and/or contemporary gneissic granite, with main rock types being gabbro and norite gabbro.The gabbros in Zhuya and Yunlu yielded 206Pb/238U weighted age of ca.445Ma.The gabbros show relatively high MgO, CaO, low TiO2 content, very low ∑REE (20.8×10-6~26.6×10-6), weak enrichment of LREE and strong depletion of HFSE (Nb-Zr-Ti-P).Zircons give negative εHf(t) and TDM model ages from 1.1Ga to 1.4Ga, showing the features of an enriched mantle source.Tectonic setting analysis shows that the gab-bors acted like volcanic arc rocks.Previous studies show many Early Paleozoic mafic rocks in Cathaysia Block with characteristic fin-gerprints of arc volcanic rock features, and hence the Early Paleozoic geotectonic evolution history in Yunkai terrane (even Cathaysia Block) should be reconsidered.

  • 加载中
  • [1] 彭松柏, 金振民, 刘云华, 等.云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J].地球科学——中国地质大学学报, 2006, 31(1):110-120.

    Google Scholar

    [2] Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 2007, 12(4):404-416. doi: 10.1016/j.gr.2006.10.003

    CrossRef Google Scholar

    [3] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China:New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5/6):772-793.

    Google Scholar

    [4] Zhao K D, Jiang S Y, Sun T, et al. Zircon U-Pb dating, trace element and Sr-Nd-Hf isotope geochemistry of Paleozoic granites in the Miao' ershan-Yuechengling batholith, South China:Implication for petrogenesis and tectonic-magmatic evolution[J]. Journal of Asian Earth Sciences, 2013, 25:244-264.

    Google Scholar

    [5] Wang Y J, Zhang A M, Fan W M, et al. Kwangsian crustal anatexis within the eastern South China Block:Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J]. Lithos, 2011, 127(1/2):239-260.

    Google Scholar

    [6] Li X H, Li Z X, He B, et al. The Early Permian active continental margin and crustal growth of the Cathaysia Block:In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons[J]. Chemical Geology, 2012, 328:195-207. doi: 10.1016/j.chemgeo.2011.10.027

    CrossRef Google Scholar

    [7] 彭松柏, 金振民, 付建明, 等.两广云开隆起区基性侵入岩的地球化学特征及其构造意义[J].地质通报, 2006, 25(4):434-441.

    Google Scholar

    [8] Wang Y J, Zhang A M, Fan W M, et al. Origin of paleosubductionmodified mantle for Silurian gabbro in the Cathaysia Block:Geochronological and geochemical evidence[J]. Lithos, 2013, 160-161:37-54. doi: 10.1016/j.lithos.2012.11.004

    CrossRef Google Scholar

    [9] Zhang Q, Jiang Y H, Wang G C, et al. Origin of Silurian gabbros and I-type granites in central Fujian, SE China:Implications for the evolution of the early Paleozoic orogen of South China[J]. Lithos, 2015, 216/217:285-297. doi: 10.1016/j.lithos.2015.01.002

    CrossRef Google Scholar

    [10] Zhang C L, Santosh M, Zhu Q B, et al. The Gondwana connection of South China:Evidence from monazite and zircon geochronology in the Cathaysia Block[J]. Gondwana Research, 2014, 28(3):1137-1151.

    Google Scholar

    [11] Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247:133-153. doi: 10.1016/j.chemgeo.2007.10.016

    CrossRef Google Scholar

    [12] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27:1391-1399. doi: 10.1039/c2ja30078h

    CrossRef Google Scholar

    [13] Winchester J A, Floyd P A. Geochemical magma type discrimination:application to altered and metamorphosed basic igneous rocks[J]. Earth Planet. Sci. Lett., 1976, 28:459-469. doi: 10.1016/0012-821X(76)90207-7

    CrossRef Google Scholar

    [14] Miyashiro A. Volcanic rock series in island arc and active continental margins[J]. Am. J. Sci., 1974, 274:321-355. doi: 10.2475/ajs.274.4.321

    CrossRef Google Scholar

    [15] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt:implications for mantle composition and processes[C]//Saundera A D, Norry M J. Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ., 1989, 42:528-548.

    Google Scholar

    [16] Yao W H, Li Z X, Li W X, et al. Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China:Evidence from ca. 435Ma high-Mg basalts[J]. Lithos, 2012, 154:115-129. doi: 10.1016/j.lithos.2012.06.033

    CrossRef Google Scholar

    [17] 覃小锋, 潘元明, 李江, 等.桂东南云开地区变质杂岩锆石SHRIMP U-Pb年代学[J].地质通报, 2006, 25(5):553-559.

    Google Scholar

    [18] Wang Y J, Wu C M, Zhang A M, et al. Kwangsian and Indosinian reworking of the eastern South China Block:Constraints on zircon U-Pb geochronology and metamorphism of amphibolites and granulites[J]. Lithos, 2012, 150:227-242. doi: 10.1016/j.lithos.2012.04.022

    CrossRef Google Scholar

    [19] Wang Y J, Fan W M, Zhang G W, et al. Phanerozoic tectonics of the South China Block:Key observations and controversies[J]. Gondwana Research, 2013, 23:1273-1305. doi: 10.1016/j.gr.2012.02.019

    CrossRef Google Scholar

    [20] Wan Y S, Liu D Y, Wilde S A, et al. Evolution of the Yunkai Terrane, South China:Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope[J]. Journal of Asian Earth Sciences, 2010, 37(2):140-153. doi: 10.1016/j.jseaes.2009.08.002

    CrossRef Google Scholar

    [21] Chen Z H, Liu Y H, Lee C Y, et al. Geochronology of granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai massif), South China:Emphasis on the in-situ EMP monazite dating[J]. Lithos, 2012, 144/145:109-129. doi: 10.1016/j.lithos.2012.04.009

    CrossRef Google Scholar

    [22] Wang D, Zheng J P, Ma Q, et al. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China[J]. Lithos, 2013, 175/176:124-145. doi: 10.1016/j.lithos.2013.04.024

    CrossRef Google Scholar

    [23] 王磊, 龙文国, 周岱.云开地区加里东期花岗岩锆石U-Pb年龄及其地质意义[J].中国地质, 2013, 40(4):1016-1029.

    Google Scholar

    [24] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crust contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50:11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [25] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the NbZr-Y diagram[J]. Chemical Geology, 1986, 56:207-218. doi: 10.1016/0009-2541(86)90004-5

    CrossRef Google Scholar

    [26] Cabanis B, Lecolle M. Le diagramme La/10-Y/15-Nb/8:un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mé1ange et/ou de contamination crustale[J]. CR Acad. Sci. Ser. Ⅱ, 1989, 309:2023-2029.

    Google Scholar

    [27] Shervais J W. Ti-V plots and the petrogenesis of modern ophiolitic lavas[J]. Earth and Planetary Science Letter, 1982, 59:101-118. doi: 10.1016/0012-821X(82)90120-0

    CrossRef Google Scholar

    [28] Pearce JA. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Andesites:Orogenic Andesites and Related Rocks. Wiley, Chichester, 1982:525-548.

    Google Scholar

    [29] 覃小锋, 王宗起, 胡贵昂, 等.两广交界地区壶垌片麻状复式岩体的年代学和地球化学:对云开地块北缘早古生代构造-岩浆作用的启示[J].岩石学报, 2013, 29(9):3115-3130.

    Google Scholar

    [30] 陈武钦, 王漂元, 林建华.粤北始兴县城南志留纪火山岩的基本特征[J].中国西部科技, 2006, 16:29-30. doi: 10.3969/j.issn.1671-6396.2006.36.017

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(946) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint