2017 Vol. 36, No. 4
Article Contents

SUN Zhenmeng, QIAN Zheng, LU Xiancai, GUO Qin, XU Jintan, SHI Yuanpeng, HU Wenxuan. Reservoir property of the special lithologic section in the lower Tengger Formation of A'nan depression, Er'lian basin[J]. Geological Bulletin of China, 2017, 36(4): 644-653.
Citation: SUN Zhenmeng, QIAN Zheng, LU Xiancai, GUO Qin, XU Jintan, SHI Yuanpeng, HU Wenxuan. Reservoir property of the special lithologic section in the lower Tengger Formation of A'nan depression, Er'lian basin[J]. Geological Bulletin of China, 2017, 36(4): 644-653.

Reservoir property of the special lithologic section in the lower Tengger Formation of A'nan depression, Er'lian basin

More Information
  • Although A'nan depression has been well prospected in past years, no lithologic reservoir has been discovered. The special lithologic section of the Tengger Formation is the potential reservoir strata. Based on lithologic characterization, scanning electronic microscopy, and electron probe measurement, the authors investigated the reservoir properties of the special lithologic section. The lithologic section is mainly composed of gray dolomitic mudstone, argillaceous dolomite, calcareous sedimentary stuff and calcareous fine sandstone intercalated with gray green massive tuff. The calcareous cementation and clayey cementation are the main types of ce-mentation. The tuff and sedimentary tuff elemental geochemical analysis shows that, with the alteration of diagenesis fluid, the silicate and sedimentary tuff dissolved significantly, which led to abundant secondary pores and strong depletion of heavy rare earth elements. These secondary pores and intergranular pores together with micro-fracture constitute the main potential reservoir space and the migration paths of the hydrocarbon.

  • 加载中
  • [1] 李秀英, 肖阳, 杨全凤, 等.二连盆地阿南洼槽岩性油藏与致密油勘探潜力[J].中国石油勘探, 2013, 18(6):56-61.

    Google Scholar

    [2] 蓝宝锋, 杨克兵, 彭传利, 等.二连盆地阿南凹陷致密油勘探潜力分析[J].复杂油气藏, 2014, 7(2):9-12.

    Google Scholar

    [3] 杜金虎, 易士威, 雷怀玉, 等.二连盆地岩性地层油藏形成条件与油气分布规律[J].中国石油勘探, 2004, 9(3):1-5.

    Google Scholar

    [4] 赵贤正, 降栓奇, 淡伟宁, 等.二连盆地阿尔凹陷石油地质特征研究[J].岩性油气藏, 2010, 22(1):12-17.

    Google Scholar

    [5] 朱敏, 郭睿博, 崔永谦, 等.二连盆地"特殊岩性段"沉积储层特征与成藏[J].内蒙古石油化工, 2014, 21:132-135. doi: 10.3969/j.issn.1006-7981.2014.13.050

    CrossRef Google Scholar

    [6] 费宝生, 祝玉衡, 邹伟宏, 等.二连裂谷盆地群油气地质[M].北京:石油工业出版社, 2001:14-15, 114-121.

    Google Scholar

    [7] 张文朝, 雷怀玉, 姜冬华, 等.二连盆地阿南凹陷的油气演化与油气聚集规律[J].河南石油, 1998, 12(2):1-5.

    Google Scholar

    [8] 易士威, 李正文, 焦贵浩.二连盆地凹陷结构与成藏模式[J].石油勘探与开发, 1998, 2:8-12. doi: 10.3321/j.issn:1000-0747.1998.01.003

    CrossRef Google Scholar

    [9] 孙志华, 洪月英, 吴奇之, 等.二连盆地阿南凹陷气藏地震特征[J].天然气工业, 2001, 21(3):26-29.

    Google Scholar

    [10] 杜金虎.二连盆地隐蔽油藏勘探[M].北京:石油工业出版社, 2003:140-148.

    Google Scholar

    [11] 郭强, 钟大康, 张放东, 等.内蒙古二连盆地白音查干凹陷下白垩统湖相白云岩成因[J].古地理学报, 2012, 14(1):59-68. doi: 10.7605/gdlxb.2012.01.006

    CrossRef Google Scholar

    [12] Hopf S, 庞奖励.新西兰地热系统中稀土元素的行为[J].地质科学译丛, 1995, 12(2):45-51.

    Google Scholar

    [13] 丁振举, 刘丛强, 姚书振, 等.海底热液系统高温流体的稀土元素组成及其控制因素[J].地球科学进展, 2000, 15(3):307-312.

    Google Scholar

    [14] 王希斌, 鲍佩声, 戌合.中国蛇绿岩中变质橄榄岩的稀土元素地球化学[J].岩石学报, 1995, 11:24-41. doi: 10.3321/j.issn:1000-0569.1995.z1.003

    CrossRef Google Scholar

    [15] 赵志根, 唐修义, 杨起, 等.哈密.淮北煤变质程度与稀土元素的关系研究[J].中国矿业大学学报, 2001, 30:165-169. doi: 10.3321/j.issn:1000-1964.2001.02.014

    CrossRef Google Scholar

    [16] Anders E, Grevesse N. Abundances of the elements:Meteoritic and solar[J]. Geochimica Et Cosmochimica Acta, 1989, 53(1):197-214. doi: 10.1016/0016-7037(89)90286-X

    CrossRef Google Scholar

    [17] Haskin M A, Haskin L A. Rare earths in European shales:a redeter-mination[J]. Science, 1966, 154(3748):507-509.

    Google Scholar

    [18] 毕献武, 胡献忠, Cornell D H.蚀变流体的来源:矿化事变带中原生与次生长石的稀土元素证据[J].科学通报, 2000, 45(13):1429-1432. doi: 10.3321/j.issn:0023-074X.2000.13.016

    CrossRef Google Scholar

    [19] 汪建明, 陈可奎, 宁仁祖.宁芜北段某些次火山岩和蚀变岩中的稀土元素[J].岩石矿物及测试, 1985, 4(2):97-102.

    Google Scholar

    [20] 高海仁, 李云.二连盆地宝勒根陶海凹陷下白垩统成岩作用研究[J].内蒙古石油化工, 2012, 17:132-134. doi: 10.3969/j.issn.1006-7981.2012.23.059

    CrossRef Google Scholar

    [21] 孙相灿, 杨传胜, 于兴河, 等.冀中坳陷深县凹陷古近系碎屑岩储层成岩作用及成岩演化序列分析[J].海洋地质与第四纪地质, 2014, 2:135-142.

    Google Scholar

    [22] 方杰.二连盆地下白垩统油气运移特征[J].石油实验地质, 2005, 27(2):181-186. doi: 10.11781/sysydz200502181

    CrossRef Google Scholar

    [23] 刘俊海, 胡芬, 宋文君, 等.东营凹陷南斜坡储集岩成岩作用及对储层性能的影响[J].新疆石油学院学报, 2003, 15(3):21-26.

    Google Scholar

    [24] Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and pre-dictability[J]. AAPG Bulletin, 2002, 86(2):301-328.

    Google Scholar

    [25] Haszeldine R S, Cavanagh A J, England G L. Effects of oil charge on illite dates and stopping quartz cement, calibration of basin mod-els[J]. Journal of Geochemical Exploration, 2003, 78/79:373-376. doi: 10.1016/S0375-6742(03)00151-1

    CrossRef Google Scholar

    [26] Jonk R, Hurst A, Duranti D, et al. Origin and timing of sand injec-tion, petroleum migration, and diagenesis in Tertiary reservoirs, South Viking Graben, North Sea[J]. AAPG Bulletin, 2005, 89(3):329-357. doi: 10.1306/10260404020

    CrossRef Google Scholar

    [27] Wolde G G, Broxton D E, Jr F M B. Mineralogy and temporal rela-tions of coexisting authigenic minerals in altered silicic tuffs and their utility as potential low-temperature dateable minerals[J]. Journal of Volcanology and Geothermal Research, 1996, 71(71):155-165.

    Google Scholar

    [28] 王行信.松辽盆地白垩系泥岩粘土矿物成岩演变特征及地质意义[J].石油天然气地质, 1988, 9(1):93-98.

    Google Scholar

    [29] Magara K. Comparison of porosity depth relationships of shale and sandstone[J]. Journal of Petroleum Geology, 1980, 3(2):175-185. doi: 10.1111/jpg.1980.3.issue-2

    CrossRef Google Scholar

    [30] 刘庆, 张林晔, 沈忠民, 等.东营凹陷湖相盆地类型演化与烃源岩发育[J].石油学报, 2004, 25(4):42-45. doi: 10.7623/syxb200404009

    CrossRef Google Scholar

    [31] 杨超, 张金川, 李婉君, 等.辽河坳陷沙三、沙四段泥页岩微观孔隙特征及其成藏意义[J].石油天然气地质, 2014, 35(2):286-294.

    Google Scholar

    [32] 田华, 张水昌, 柳少波, 等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报, 2012, 33(3):419-427. doi: 10.7623/syxb201203011

    CrossRef Google Scholar

    [33] 谢晓永, 唐洪明, 王春华, 等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业, 2006, 26(12):100-102. doi: 10.3321/j.issn:1000-0976.2006.12.026

    CrossRef Google Scholar

    [34] 崔景伟, 邹才能, 朱如凯, 等.页岩孔隙研究新进展[J].地球科学进展, 2012, 27(12):1319-1325.

    Google Scholar

    [35] Giesche H. Mercury porosimetry:a general (practical) overview[J]. Particle & Particle Systems Characterization, 2006, 23(1):9-19.

    Google Scholar

    [36] 焦堃, 姚素平, 吴浩, 等.页岩气储层孔隙系统表征方法研究进展[J].高校地质学报, 2014, 20(1):151-161.

    Google Scholar

    [37] 于洪观, 范维唐, 孙茂远, 等.高压下煤对CH4/CO2二元气体吸附等温线的研究[J].煤炭转化, 2005, 28(1):43-47.

    Google Scholar

    [38] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6):1099-1119. doi: 10.1306/10171111052

    CrossRef Google Scholar

    [39] 欧成华, 易敏, 李士伦, 等.高温高压下储层孔隙介质气体吸附等温线测试研究[J].石油地质与工程, 2002, 16(6):26-28.

    Google Scholar

    [40] 杨侃, 陆现彩, 徐金覃, 等.气体吸附等温线法表征页岩孔隙结构的模型适用性初探[J].煤炭学报, 2013, 38(2):818-821.

    Google Scholar

    [41] 杨正红, Thommes M.气体吸附法进行孔径分析进展——密度函数理论 (DFT) 及蒙特卡洛法 (MC) 的应用[J].中国粉体技术, 2005, 11(s1):36-42.

    Google Scholar

    [42] 苏艳敏, 徐绍平, 王吉峰, 等.活性炭的微孔结构对其选择性吸附CH4/N2混合气中CH4的影响[J].天然气工业, 2013, 33(3):89-94. doi: 10.3787/j.issn.1000-0976.2013.03.019

    CrossRef Google Scholar

    [43] 张和平, 黄南贵.微孔材料的吸附分析方法研究[J].中国粉体技术, 2005, 11(s1):89-95.

    Google Scholar

    [44] Horvath G, Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon[J]. Journal of Chemical Engineering of Japan, 1983, 16(6):470-475. doi: 10.1252/jcej.16.470

    CrossRef Google Scholar

    [45] 浦群, 杨杰, 吴启强, 等.含中孔和微孔的多孔炭的孔结构表征[J].实验技术与管理, 2015, 32(4):52-55.

    Google Scholar

    [46] 钟太贤.中国南方海相页岩孔隙结构特征[J].天然气工业, 2012, 32(9):1-4.

    Google Scholar

    [47] Curtis J B. Fractured shale-gas system[J]. AAPG Bulletin, 2002, 86(11):1921-1938.

    Google Scholar

    [48] Kruk M, Jaroniec M, Sayari A. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen ad-sorption measurements[J]. Langmuir, 1997, 13(23):6267-6273. doi: 10.1021/la970776m

    CrossRef Google Scholar

    [49] Ashvar C S, Devlin F J, Bak K L, et al. Ab initio calculation of vi-brational absorption and circular dichroism spectra:6, 8-dioxabicy-clo[3.2.1] octane[J]. The Journal of Physical Chemistry, 1996, 100(22):9262-9270. doi: 10.1021/jp953738p

    CrossRef Google Scholar

    [50] Dewar M J S, Zoebisch E G, Healy E F, et al. Am1 a new general purpose quantum mechanical molecular model[J]. Journal of the American Chemical Society, 2002, 115(12):3903-3909.

    Google Scholar

    [51] Tomasi J, Persico M. Molecular interactions in solution:An over-view of methods based on continuous distributions of the solvent[J]. Chemical Reviews, 1994, 94(7):2027-2094. doi: 10.1021/cr00031a013

    CrossRef Google Scholar

    [52] 杨侃, 陆现彩, 刘显东, 等.基于探针气体吸附等温线的矿物材料表征技术:ⅱ多孔材料的孔隙结构[J].矿物岩石地球化学通报, 2006, 4:362-368. doi: 10.3969/j.issn.1007-2802.2006.04.015

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(1088) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint