2017 Vol. 36, No. 2-3
Article Contents

YANG Huaben, LIU Yu, ZHENG Jilin, LIANG Zhongkai, WANG Xiaoyong, TANG Xuefeng, SU Yanping. Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China[J]. Geological Bulletin of China, 2017, 36(2-3): 342-356.
Citation: YANG Huaben, LIU Yu, ZHENG Jilin, LIANG Zhongkai, WANG Xiaoyong, TANG Xuefeng, SU Yanping. Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China[J]. Geological Bulletin of China, 2017, 36(2-3): 342-356.

Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Erguna massif, Northeast China

  • In this paper, the authors discuss LA-ICP-MS zircon U-Pb ages, major and trace element analyses for Neoproterozoic Bowuleshan amphibolite and gneissic granite on the southeastern margin of Erguna massif, northern Da Hinggan Mountains. The purpose is to elucidate the tectonic history of the Erguna massif and its relationship to the assemblage of the Rodinia supercontinent. Zircons collected from amphibolite exhibit core-rim structure in CL images, the U-Pb dating yielded the age of 904±4Ma for magmatic core and 889~915Ma for metamorphic rim. Zircons collected from gneissic granite are euhedral-subhedral in form, and display fine-scale oscillatory growth zoning in CL images, implying a magmatic origin. The dating age is 915±3Ma. Zircon U-Pb dating demonstrates that these rocks were emplaced during the Neoproterozoic. The Neoproterozoic gneissic granite in the Erguna massif has SiO2=61.85%~67.63%, Mg#=36.9~47.9, Na2O+K2O=4.21%~9.29%, and A/CNK=0.89~1.01, suggesting metaluminous characteristics, Moreover, the Neoproterozoic granitoids are enriched in LREEs and LILEs, and depleted in HREEs and high field strength elements (HFSEs, Nb, Ta, and Ti), with Eu negative anomalies (δEu=0.77~0.80) and low initial Sr isotope ratios and positive values for the εNd(t) value (3.52), which implies that their primary magmas were derived from partial melting of an original crust. In contrast, the Neoproterozoic amphibolite has low SiO2 (45.22%~49.16%), relatively high Mg#, high Ni, Cr, low Zr/Hf, Nb/Ta and Th/ U ratios, and Co content. The flat REE patterns are analogous to features of N-type MORB from the depleted mantle source, but are characterized by enrichment of LILEs (Rb, Ba, K, Sr and Pb) and depletion of HFSEs such as Nb, Ta and Ti; it records magmatic processes of subduction zone, and indicates that amphibolite was derived from partial melting of depleted mantle wedge with igneous activity in continental arcs, on the active continental margin. On such a basis, in combination with the regional characteristics of Neoproterozoic magmatic events, the authors have reached the conclusion that the Early Neoproterozoic magmatic events of the Erguna massif occurred in the context of the assembly of the Rodinia supercontinent, and later metamorphic events might correspond to the breakup of the Rodinia supercontinent.

  • 加载中
  • [1] Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3/4):542-556.

    Google Scholar

    [2] 任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999,(3):85-93.

    Google Scholar

    [3] 谢鸣谦. 拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M]. 北京:科学出版社, 2000.

    Google Scholar

    [4] 孙广瑞, 李仰春, 张昱. 额尔古纳地块基底地质构造[J]. 地质与资源, 2002, 11(3):129-139.

    Google Scholar

    [5] 苗来成, 刘敦一, 张福勤,等. 大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J]. 科学通报, 2007, 52(5):591-601.

    Google Scholar

    [6] 表尚虎, 郑卫政, 周兴福. 大兴安岭北部锆石U-Pb年龄对额尔古纳地块构造归属的制约[J]. 地质学报, 2012, 86(8):1262-1272.

    Google Scholar

    [7] 王洪波, 杨晓平. 大兴安岭北段新一轮国土资源大调查以来的主要基础地质成果与进展[J]. 地质通报, 2013, 32(2/3):525-532.

    Google Scholar

    [8] Liu Y, Hu Z, Gao S, et al. In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.

    Google Scholar

    [9] Liu Y, Gao S, Hu Z, et al. Continental and Oceanic Crust Recycling-induced Melt - Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):392-9.

    Google Scholar

    [10] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LAICP-MS[J]. Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [11] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.

    Google Scholar

    [12] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to mineralogy and petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [13] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [14] 周世泰. 恢复变质岩原岩的一种岩石化学方法[J]. 辽宁地质学报, 1981, (1):178-187.

    Google Scholar

    [15] Simonen A. Stratigraphy and sedimentation of the Svecofennidic, early Archeansupracrustal rocks in southwestern Finland[J]. Bulletin of the Geological Society of Finland, 1953, 160:1-64.

    Google Scholar

    [16] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4):325-343.

    Google Scholar

    [17] Large R R. The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits[J]. Economic Geology, 2001, 96(5):957-971.

    Google Scholar

    [18] Maclean W H. Mass change calculations in altered rock series[J]. MineraliumDeposita, 1990, 25(1):44-49.

    Google Scholar

    [19] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5):751-767. doi: 10.1107/S0567739476001551

    CrossRef Google Scholar

    [20] Niu Y, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle[J]. Earth & Planetary Science Letters, 1998, 155(1/2):147-147.

    Google Scholar

    [21] Niu Y, Hékinian R. Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast-spreading ridges[J]. Earth & Planetary Science Letters, 1997, 146(1/2):243-258.

    Google Scholar

    [22] Niu Y. Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and, Post-melting Processes Beneath Mid-Ocean Ridges[J]. Journal of Petrology, 2004, 45(12):2423-2458. doi: 10.1093/petrology/egh068

    CrossRef Google Scholar

    [23] Niu Y. ChemInform Abstract: Earth Processes Cause Zr-Hf and Nb-Ta Fractionations, but Why and How?[J]. ChemInform, 2012, 43(29):3587-3591.

    Google Scholar

    [24] Alard O, Luguet A, Pearson N J, et al. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle[J]. Nature, 2005, 436(7053):1005-8. doi: 10.1038/nature03902

    CrossRef Google Scholar

    [25] Thompson R N, O'Hara M J. An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach[and Discussion][J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 1984, 310(1514):549-590.

    Google Scholar

    [26] Eiler J M, Crawford A, Elliott T, et al. Oxygen Isotope Geochemistry of Oceanic-Arc Lavas[J]. Journal of Petrology, 2000, 41(2):229-256. doi: 10.1093/petrology/41.2.229

    CrossRef Google Scholar

    [27] Chung S L, Wang K L, Crawford A J, et al. High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassiclavas[J]. Lithos, 2001, 59(4):153-170. doi: 10.1016/S0024-4937(01)00067-6

    CrossRef Google Scholar

    [28] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[J]. Journal of Geology, 1985, 94(4): 632-633.

    Google Scholar

    [29] Mahoney J J, Coffin M F. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints[C]//Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, 2013:335-355.

    Google Scholar

    [30] Jochum K P, Mcdonough W F, Palme H, et al. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotitexenoliths[J]. Nature, 1989, 340(6234):548-550. doi: 10.1038/340548a0

    CrossRef Google Scholar

    [31] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1):33-47. doi: 10.1007/BF00375192

    CrossRef Google Scholar

    [32] 汪云亮, 张成江, 修淑芝. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3):413-421.

    Google Scholar

    [33] 万渝生, 吴澄宇, 张炳熹, 稀土元素地球化学与玄武质岩石的成因-应用与问题. 岩石圈研究的现代方法.[M] 北京: 原子能出版社, 1997: 215-228.

    Google Scholar

    [34] Taylor S R, Mclennan S M. The chemical composition of the Archaeancrust[J]. Geological Society London Special Publications, 1986, 24:173-178. doi: 10.1144/GSL.SP.1986.024.01.16

    CrossRef Google Scholar

    [35] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):293-301.

    Google Scholar

    [36] 高山, 骆庭川, 张本仁,等. 中国东部地壳的结构和组成[J]. 中国科学:地球科学, 1999, 29(3):204-213.

    Google Scholar

    [37] 洪大卫, 王式, 谢锡林,等. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000(2):441-456.

    Google Scholar

    [38] Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic crustal growth: UPb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1):89-113.

    Google Scholar

    [39] Jahn B M, Griffin W L, Windley B. Continental growth in the Phanerozoic: Evidence from Central Asia[J]. Tectonophysics, 2000, 328(328):vii-x.

    Google Scholar

    [40] 吴福元, 孙德有. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15(2):181-189.

    Google Scholar

    [41] Martin H. Adakitic magmas: modern analogues of Archaeangranitoids[J]. Lithos, 1999, 46(3):411-429. doi: 10.1016/S0024-4937(98)00076-0

    CrossRef Google Scholar

    [42] 罗毅, 王正邦, 周德安. 额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景[J]. 东华理工大学学报(自然科学版), 1997(1): 1-10.

    Google Scholar

    [43] 武广, 孙丰月, 赵财胜,等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 2005, 50(20):2278-2288.

    Google Scholar

    [44] 边红业, 吉峰, 表尚虎. 大兴安岭富西里地区赞岐岩-(石英)二长闪长岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 世界地质, 2014, 33(4):768-779.

    Google Scholar

    [45] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [46] Gou J, Sun D Y, Ren Y S, et al. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence[J]. Journal of Asian Earth Sciences, 2013, 67: 114-137.

    Google Scholar

    [47] 张一涵. 内蒙古东北部额尔古纳河群和乌宾敖包组的形成时代与物源:碎屑锆石U-Pb年代学证据[D]. 吉林大学硕士学位论文, 2014.

    Google Scholar

    [48] 李明. 中国东北现代河流碎屑锆石U-Pb年代学和Hf同位素研究及大陆生长与演化[D]. 中国地质大学博士学位论文, 2010.

    Google Scholar

    [49] 陈岳龙, 李大鹏, 刘长征, 等. 大兴安岭的形成与演化历史: 来自河漫滩沉积物地球化学及其碎屑锆石U-Pb年龄, Hf同位素组成的证据[J]. 地质学报, 2014, 88(1): 1-14.

    Google Scholar

    [50] Powell C M, Powell C M. Assembly and break-up of Rodinia: introduction to the special volume[J]. Precambrian Research, 2001, 110(1):1-8.

    Google Scholar

    [51] 郭进京, 张国伟, 陆松年,等. 中国新元古代大陆拼合与Rodinia超大陆[J]. 高校地质学报, 1999(2):148-156.

    Google Scholar

    [52] 周建波, 曾维顺, 曹嘉麟,等. 中国东北地区的构造格局与演化:从500Ma到180Ma[J]. 吉林大学学报(地), 2012, 42(5):1298-1316.

    Google Scholar

    [53] Hoffman P F. Did the breakout of laurentia turn gondwanaland inside-out?[J]. Science, 1991, 252(5011):1409-12. doi: 10.1126/science.252.5011.1409

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(620) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint