2017 Vol. 36, No. 2-3
Article Contents

NONG Junnian, ZOU Yu, QIU Enlu, GUO Shangyu, YE Xusong, XIANG Feng, WEN Ming, LU Shiyi. Petrogenesis of Dacun and Gulong plutons in southeast Guangxi: Constraints from geochemistry, zircon U-Pb ages and Hf isotope[J]. Geological Bulletin of China, 2017, 36(2-3): 224-237.
Citation: NONG Junnian, ZOU Yu, QIU Enlu, GUO Shangyu, YE Xusong, XIANG Feng, WEN Ming, LU Shiyi. Petrogenesis of Dacun and Gulong plutons in southeast Guangxi: Constraints from geochemistry, zircon U-Pb ages and Hf isotope[J]. Geological Bulletin of China, 2017, 36(2-3): 224-237.

Petrogenesis of Dacun and Gulong plutons in southeast Guangxi: Constraints from geochemistry, zircon U-Pb ages and Hf isotope

  • The Dacun and Gulong plutons were found in the southwest orogenic belt of the Yangtze block and the Cathaysia block, and the pluton has important geological significance in analyzing the regional tectonic evolution of South China. In this paper, two quartz diorite samples were collected from Dacun pluton and Gulong pluton for LA-ICP-MS zircon U-Pb dating, respectively, which yielded U-Pb ages of 438±1Ma and 435±2Ma, indicating that the Dacun pluton and Gulong pluton were both formed in Caledonian orogeny. The data show that the Dacun pluton and Gulong pluton belong to I-type granite which has calc-alkaline and aluminous-peraluminous features. The Hf isotopic compositions of zircons show that the rocks have εHf(t) values from 0 to +4, and TDM2(Hf) model ages are mainly concentrated in the range of 1.15~1.45Ga, implying that the magma was derived from the basic lower crust material, and the lower crust was formed in the Mesoproterozoic. According to geochemical features of the Dacun and Gulong plutons, Hf isotopic composition, and the dark particles-bearing pluton, in combination with regional geological conditions, the authors hold that, after the intracontinental collision orogenic period, the Dacun and Gulong plutons were formed along with the local lithosphere stretching-thinning, the upwelling of high temperature mantle materials from the asthenosphere, and the partial melting of the basic lower crust in the Mesoproterozoic. In the process of melting, there existed mixture of the upwelling mantle-derived magma formed in the source area at different levels, thus leading to the generation of parental magma. And then the magma experienced a certain degree of differentiation and evolution, finally forming rocks through solidification.

  • 加载中
  • [1] 丘元禧, 马文璞, 范小林, 等."雪峰古陆"加里东期的构造性质和构造演化[J].中国区域地质, 1996, (2): 150-160.

    Google Scholar

    [2] 郭令智, 俞剑华, 施央申.华南加里东地槽褶皺区大地构造的几个问题的探讨[J].南京大学学报 (自然科学版), 1963, (14): 1-17.

    Google Scholar

    [3] 殷鸿福, 吴顺宝, 杜远生, 等.华南是特提斯多岛洋体系的一部分[J].地球科学, 1999, 24(1): 3-14.

    Google Scholar

    [4] 王德滋, 沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘, 2003, 10(3): 209-220.

    Google Scholar

    [5] 黄标, 孙明志, 武少兴, 等.武夷山中段加里东期混合岩的特征及成因讨论[J].岩石学报, 1994, 10(4): 427-439.

    Google Scholar

    [6] 张芳荣, 舒良树, 王德滋, 等.江西付坊花岗岩体的年代学、地球化学特征及其成因研究[J].高校地质学报, 2010, (2): 161-176.

    Google Scholar

    [7] 沈渭洲, 张芳荣, 舒良树, 等.江西宁冈岩体的形成时代、地球化学特征及其构造意义[J].岩石学报, 2008, 24(10): 2244-2254.

    Google Scholar

    [8] 广西壮族自治区地质矿产局.广西壮族自治区区域地质志[M].北京:地质出版社, 1985: 1-853.

    Google Scholar

    [9] Sláma J, Kostler J, Condon D J, et al. Plesovice-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.

    Google Scholar

    [10] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [11] Ludwig K R. User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0)[J]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 104: 1-70.

    Google Scholar

    [12] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4): 481-492.

    Google Scholar

    [13] Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5530): 683-687. doi: 10.1126/science.1061372

    CrossRef Google Scholar

    [14] Blicherttoft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

    Google Scholar

    [15] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 533-556.

    Google Scholar

    [16] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269.

    Google Scholar

    [17] Compston W, Williams I S, Kirschvink J L, et al. zircon u-pb ages for the early cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(Part 2): 171-184.

    Google Scholar

    [18] Barros C E D, Nardi S R, Dillenburg, et al. Detrital Minerals of Modern Beach Sediments in Southern Brazil: A Provenance Study Based on the Chemistry of Zircon[J]. Journal of Coastal Research, 2010, 26(1): 80-93.

    Google Scholar

    [19] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [20] Chen F, Hegner E, Todt W. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: evidence for a Cambrian magmatic arc[J]. International Journal of Earth Sciences, 2000, 88(4): 791-802. doi: 10.1007/s005310050306

    CrossRef Google Scholar

    [21] 许华, 黄炳诚, 倪战旭, 等.钦杭成矿带西段古龙花岗岩株群岩石学、地球化学及年代学[J].华南地质与矿产, 2012, 28(4): 331-339.

    Google Scholar

    [22] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 198, (42): 313-345.

    Google Scholar

    [23] Zhang S H, Zhao Y, Kroner A, et al. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6): 1441-1467. doi: 10.1007/s00531-008-0368-2

    CrossRef Google Scholar

    [24] Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281. doi: 10.1007/s004100050155

    CrossRef Google Scholar

    [25] Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 2006, 146(3): 179-212.

    Google Scholar

    [26] 张菲菲, 王岳军, 范蔚茗, 等.湘东-赣西地区早古生代晚期花岗岩体的LA-ICPMS锆石U-Pb定年研究[J].地球化学, 2010, 39(5): 414-426.

    Google Scholar

    [27] 楼法生, 沈渭洲, 王德滋, 等.江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究[J].地质学报, 2005, 79(5): 636-644.

    Google Scholar

    [28] 农军年, 钟玉芳, 刘磊, 等.赣西北麦斜岩体的成因:地球化学、锆石U-Pb年代学及Hf同位素制约[J].地质科技情报, 2012, 31(2): 9-18.

    Google Scholar

    [29] 徐先兵, 张岳桥, 舒良树, 等.闽西南玮埔岩体和赣南菖蒲混合岩锆石La-ICPMS U-Pb年代学:对武夷山加里东运动时代的制约[J].地质论评, 2009, 55(2): 277-285.

    Google Scholar

    [30] 张爱梅, 王岳军, 范蔚茗, 等.闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究[J].大地构造与成矿学, 2010, 34(3): 408-418.

    Google Scholar

    [31] 程顺波, 付建明, 徐德明, 等.桂东北大宁岩体锆石SHRIMP年代学和地球化学研究[J].中国地质, 2009, 36(6): 1278-1288.

    Google Scholar

    [32] Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 2007, 12(4): 404-416. doi: 10.1016/j.gr.2006.10.003

    CrossRef Google Scholar

    [33] 李巍, 毕诗健, 杨振, 等.桂东大瑶山南缘社山花岗闪长岩的锆石U-Pb年龄及Hf同位素特征:对区内加里东期成岩成矿作用的制约[J].地球科学 (中国地质大学学报), 2015, 40(1): 17-33.

    Google Scholar

    [34] Kemp A I, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon.[J]. Science, 2007, 315(5814): 980-983. doi: 10.1126/science.1136154

    CrossRef Google Scholar

    [35] Collins W J, Richards S W. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 2008, 36(7): 559-562. doi: 10.1130/G24658A.1

    CrossRef Google Scholar

    [36] Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50(1): 51-73.

    Google Scholar

    [37] 肖庆辉, 邓晋福, 马大铨, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002: 1-294.

    Google Scholar

    [38] Perugini D, Poli G. Determination of the degree of compositional disorder in magmatic enclaves using SEM X-ray element maps[J]. European Journal of Mineralogy, 2004, 16(3): 431-442. doi: 10.1127/0935-1221/2004/0016-0431

    CrossRef Google Scholar

    [39] Waight T E, Maas R, Nicholls I A. Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia[J]. Lithos, 2001, 56(2/3): 165-186.

    Google Scholar

    [40] Perugini D, Poli G, Christofides G, et al. Magma mixing in the Sithonia Plutonic Complex, Greece: evidence from mafic microgranular enclaves[J]. Mineralogy and Petrology, 2003, 78(3/4): 173-200.

    Google Scholar

    [41] Collins W J, Richards S R, Healy B E, et al. Origin of heterogeneous mafic enclaves by two-stage hybridisation in magma conduits (dykes) below and in granitic magma chambers[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences, 2000, 91(Part 1/2): 27-45.

    Google Scholar

    [42] 于津海, 周新民, Reilly Y S O, 等.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究[J].科学通报, 2005, 50(16): 84-93.

    Google Scholar

    [43] 邱检生, 肖娥, 胡建, 等.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报, 2008, (11): 2468-2484.

    Google Scholar

    [44] Dostal J, Chatterjee A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 2000, 163(1): 207-218.

    Google Scholar

    [45] Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 2005, 136(1): 51-66. doi: 10.1016/j.precamres.2004.09.008

    CrossRef Google Scholar

    [46] 许德如, 陈广浩, 夏斌, 等.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J].高校地质学报, 2006, 12(4): 507-521.

    Google Scholar

    [47] 楼法生, 舒良树, 于津海, 等.江西武功山穹隆花岗岩岩石地球化学特征与成因[J].地质论评, 2002, 48(1): 80-88.

    Google Scholar

    [48] Shu L S, Faure M, Jiang S Y, et al. SHRIMP zircon U-Pb age, litho-and biostratigraphic analyses of the Huaiyu Domain in South China-Evidence for a Neoproterozoic orogen, not Late Paleozoic-Early Mesozoic collision[J]. Episodes, 2006, 29(4): 244-252.

    Google Scholar

    [49] 张春红, 范蔚茗, 王岳军, 等.湘西隘口新元古代基性-超基性岩墙年代学和地球化学特征:岩石成因及其构造意义[J].大地构造与成矿学, 2009, 32(2): 283-293.

    Google Scholar

    [50] 舒良树, 于津海, 贾东, 等.华南东段早古生代造山带研究[J].地质通报, 2008, 27(10): 1581-1593.

    Google Scholar

    [51] 戎嘉余, 詹仁斌, 黄冰, 等.一个罕见的奥陶纪末期深水腕足动物群在浙江杭州余杭的发现[J].科学通报, 2007, 52(22): 2632-2637.

    Google Scholar

    [52] 陈旭, 布科, 阮亦萍, 等.显生宙全球气候变化与生物绝灭事件的联系[J].地学前缘, 1997, 4(Z2): 127-132.

    Google Scholar

    [53] 张芳荣, 舒良树, 王德滋, 等.华南东段加里东期花岗岩类形成构造背景探讨[J].地学前缘, 2009, 16(1): 248-260.

    Google Scholar

    [54] Li X H, Li Z X, Ge W C, et al. U-Pb Zircon Ages of the Neoproterozoic Granitoids in South China and Their Tectonic Implications[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2001, 20(4): 271-273.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(1131) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint