2018 Vol. 37, No. 9
Article Contents

ZHANG Chao, ZHANG Yujin, QUAN Jingyu, GUO Wei, GUO Jiangang, WANG Qingzhao, LI Wei, WANG Yan, SONG Weimin, NA Fuchao, TAN Hongyan. Zircon U-Pb geochronology and petrogenesis of rhyolites in Manketouebo Formation from the Kundu area in Jarud Basin, Inner Mongo-lia[J]. Geological Bulletin of China, 2018, 37(9): 1633-1643.
Citation: ZHANG Chao, ZHANG Yujin, QUAN Jingyu, GUO Wei, GUO Jiangang, WANG Qingzhao, LI Wei, WANG Yan, SONG Weimin, NA Fuchao, TAN Hongyan. Zircon U-Pb geochronology and petrogenesis of rhyolites in Manketouebo Formation from the Kundu area in Jarud Basin, Inner Mongo-lia[J]. Geological Bulletin of China, 2018, 37(9): 1633-1643.

Zircon U-Pb geochronology and petrogenesis of rhyolites in Manketouebo Formation from the Kundu area in Jarud Basin, Inner Mongo-lia

  • Age and tectonic implications of the Late Jurassic rhyolites in Kundu area of Jarud Basin were studied by using zircon U-Pb dating, in situ Lu-Hf isotopic analysis, petrographic analysis and other geochemical methods. LA-ICP-MS zircon U-Pb dating results show that the rhyolites were formed in Late Jurassic, with their formation age being 151.2±1.2Ma. The geochemical study suggests that rhyolites are rich in silicon and alkali, but poor in calcium and magnesia. The REE values of them are between 110.38×10-6 and 138.88×10-6, displaying medium LREE-enriched and HREE-depleted REE patterns[(La/Yb)N=6.24~7.43], with weak negative Eu anomaly (δEu=0.72~0.98). The trace element geochemistry is characterized evidently by enrichment of Cs, Rb, Ba and LREE, strong depletion of Sr, P, Ti, and mediate depletion of Nb, Ta, with the εHf(t) values varying from -10.1~4.9, corresponding to TDMC model ages of 1192~3639Ma, which shows that the rhyolitc magma originated mainly from the partial melting of Proterozoic and Archean crustal rocks, and suffered fractional crystallization. Based on the above result, in combination with previous studies of the contemporaneous magma-tectonic activities in Da Hinggan Mountains, the authors hold that the rhyolites in Manketouebo Formation were formed in an extensional setting related to Mongolia Okhotsk orogenesis

  • 加载中
  • [1] 陈树旺, 丁秋红, 郑月娟, 等.松辽盆地外围新区、新层系——油气基础地质调查进展与认识[J].地质通报, 2013, 32(8):1147-1158. doi: 10.3969/j.issn.1671-2552.2013.08.002

    CrossRef Google Scholar

    [2] 林强.东北亚中生代火山岩研究若干问题的思考[J].世界地质, 1999, 18(2):14-22.

    Google Scholar

    [3] 吴福元, 曹林.东北地区的若干重要基础地质问题[J].世界地质, 1999, 18(2):1-13.

    Google Scholar

    [4] 葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学(中国地质大学学报), 2000, 25(2):172-178.

    Google Scholar

    [5] 张渝金, 张超, 郭威, 等.内蒙古阿鲁科尔沁旗林西组植物化石新材料[J].地质与资源, 2017, 26(4):333-338. doi: 10.3969/j.issn.1671-1947.2017.04.001

    CrossRef Google Scholar

    [6] 王成文, 金巍, 张兴洲, 等.东北及领区晚古生代大地构造属性新认识[J].地层学杂志, 2008, 32(2):119-136. doi: 10.3969/j.issn.0253-4959.2008.02.001

    CrossRef Google Scholar

    [7] 杨兵, 张雄华, 葛孟春, 等.内蒙古林西地区晚二叠世-早三叠世孢粉组合及三叠系的发现[J].地球科学, 2014, 39(7):784-794.

    Google Scholar

    [8] 程银行, 滕学建, 杨俊泉, 等.内蒙古东乌旗敖包查干地区中生代陆相火山构造特征[J].地质调查与研究, 2011, 34(1):16-22. doi: 10.3969/j.issn.1672-4135.2011.01.003

    CrossRef Google Scholar

    [9] 宋彪, 张玉海, 万渝生, 等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质评论, 2002, 48(S1):26-30.

    Google Scholar

    [10] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234:105-126. doi: 10.1016/j.chemgeo.2006.05.003

    CrossRef Google Scholar

    [11] Xie L W, Zhang Y B, Zhang H H, et al. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite[J]. Chinese Science Bulletin, 2008, 53:1565-1573.

    Google Scholar

    [12] Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293:683-687.

    Google Scholar

    [13] Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth Planet. Sci. Lett., 1997, 148:243-258. doi: 10.1016/S0012-821X(97)00040-X

    CrossRef Google Scholar

    [14] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time[J]. Geochim. Cosmochim. Acta, 1999, 63:533-556. doi: 10.1016/S0016-7037(98)00274-9

    CrossRef Google Scholar

    [15] Griffin W L, Wang X, Jackson S E, et al. Zircon geochemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous conplexes[J]. Lithos, 2002, 61:237-269.

    Google Scholar

    [16] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 1993, 171:223-232. doi: 10.1111/jmi.1993.171.issue-3

    CrossRef Google Scholar

    [17] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Review, 1994, 37:215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [18] Irvine T N, Baragar W R. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Science, 1971, 8:523-548.

    Google Scholar

    [19] Peccerillo A, Taylor S R. Geochemistry of Eocene cala-alkallne volcanic rocks from the Kastamonu area. Northern Turkey[J]. Contrib. Mineral. and Petrol., 1976, 58:63-81.

    Google Scholar

    [20] Boynton W V. Chapter 3-Cosmochemistry of the rare earth elements:meteorite studies[J]. Developments in Geochemistry, 1984, 2(2):63-114.

    Google Scholar

    [21] Mcdonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253.

    Google Scholar

    [22] Bacon C R, Druitt T H. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon[J]. Contributions to Mineralogy and Petrology, 1988, 98(2):224-256. doi: 10.1007/BF00402114

    CrossRef Google Scholar

    [23] Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 2004, 78(1/2):1-24.

    Google Scholar

    [24] 林强, 葛文春, 曹林, 等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 2003, 32(3):208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002

    CrossRef Google Scholar

    [25] Guffanti M, Clynne M A, Muffler L. Thermal and massmimplications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1996, 101(B2):3003-3013. doi: 10.1029/95JB03463

    CrossRef Google Scholar

    [26] Wilson M. Magmatism and the geodynamics of basin formation[J]. Sediment Geology, 1993, 86(1/2):5-29.

    Google Scholar

    [27] Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3/4):117-137.

    Google Scholar

    [28] Tischendorf G, Paelchen W. Zur Klassifikation von Granitoiden/Classification of granitoids[J]. Zeitschrift fuer Geologische Wissenschaften, 1985, 13(5):615-627.

    Google Scholar

    [29] 单强, 曾乔松, 罗勇, 等.新疆阿尔泰康布铁堡组钾质和钠质流纹岩的成因及同位素年代学研究[J].岩石学报, 2011, 7(12):3653-3665.

    Google Scholar

    [30] Green T H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Ssdona 16 years later[J]. Chemical Geology, 1994, 117:1-36. doi: 10.1016/0009-2541(94)90119-8

    CrossRef Google Scholar

    [31] Janousek V, Finger F, Roberts M, et al. Deciphering the petrogenesis of deeply buried granites:whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif[J]. Earth & Environmental Science Transactions of the Royal Society of Edinburgh, 2004, 95:141-159.

    Google Scholar

    [32] 刘德来, 马莉.松辽盆地裂谷期前火山岩与裂谷盆地关系及动力学过程[J].地质论评, 1998, 44(2):130-135. doi: 10.3321/j.issn:0371-5736.1998.02.003

    CrossRef Google Scholar

    [33] 赵海玲, 邓晋福, 陈发景, 等.中国东北地区中生代火山岩岩石学特征与盆地形成[J].现代地质, 1998, 12(1):56-59.

    Google Scholar

    [34] 吴福元, 叶茂, 张世红.中国满洲里-绥芬河地学断面域的地球动力学模型[J].地球科学, 1995, 20(5):535-539.

    Google Scholar

    [35] Wang P J, Liu W Z, Wang S X, et al. 40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China:mConstraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences, 2002, 91(2), 331-340.

    Google Scholar

    [36] Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J]. Chemical Geology, 2010, 276(3/4):144-165.

    Google Scholar

    [37] 林强, 葛文春, 孙德有, 等.中国东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2):129-139.

    Google Scholar

    [38] 邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, (4):339-346. doi: 10.3321/j.issn:1005-2321.1999.04.017

    CrossRef Google Scholar

    [39] Wang P J, Chen F K, Chen SM, et al. Geochemical and Nd-Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin, NE China[J]. Geochemical Journal, 2006, 40(2):149-159. doi: 10.2343/geochemj.40.149

    CrossRef Google Scholar

    [40] Xu W L, Pei F P, Wang F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74:167-193.

    Google Scholar

    [41] 张超, 吴新伟, 张渝金, 等.大兴安岭北段龙江盆地光华组碱流岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2017, 36(9):1531-1541. doi: 10.3969/j.issn.1671-2552.2017.09.005

    CrossRef Google Scholar

    [42] Wu F Y, Lin J Q, Wilde SA, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2):103-119.

    Google Scholar

    [43] 高晓峰, 郭锋, 范蔚茗, 等.南兴安岭晚中生代中酸性火山岩的岩石成因[J].岩石学报, 2005, 21(3):737-748.

    Google Scholar

    [44] 隋振民, 葛文春, 吴福元, 等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报, 2007, 23(2):461-468.

    Google Scholar

    [45] 陈志广, 张连昌, 周新华, 等.满洲里新右旗火山岩剖面年代学和地球化学特征[J].岩石学报, 2006, 22(12):2971-2986.

    Google Scholar

    [46] 李长华, 卫三元, 陈贵海, 等.内蒙古满洲里地区中生代中基性火山岩成因及构造地质背景[J].世界核地质科学, 2009, 27(1):19-24.

    Google Scholar

    [47] Pitcher W S. Granite type and tectonic environment[C]//Hsu K. Mountain Building Processes. London: AcademicPress, 1983: 19-40.

    Google Scholar

    [48] Davidson J P, Stern C R. Comment and Reply on "Role of subduction erosion in the generation of Andean magmas"[J].Geology, 1991, 19(10):1054-1056. doi: 10.1130/0091-7613(1991)019<1054:CARORO>2.3.CO;2

    CrossRef Google Scholar

    [49] Pearce J A. Sources and settings of granitic rock[J]. Episodes, 1996, 19(4):120-125.

    Google Scholar

    [50] Foster H J, Tischendorf G, Trumbull R B. An evaluation of the R. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks[J]. Lithos, 1997, 40:261-293. doi: 10.1016/S0024-4937(97)00032-7

    CrossRef Google Scholar

    [51] 张旗.中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J].岩石矿物学杂志, 2013, 32(1):113-128. doi: 10.3969/j.issn.1000-6524.2013.01.010

    CrossRef Google Scholar

    [52] 张旗, 王元龙, 金惟俊, 等.造山前、造山和造山后花岗岩的识别[J].地质通报, 2008, 27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001

    CrossRef Google Scholar

    [53] 李锦轶, 莫申国, 和政军, 等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 2004, 11(3):157-168. doi: 10.3321/j.issn:1005-2321.2004.03.017

    CrossRef Google Scholar

    [54] 许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353.

    Google Scholar

    [55] Kravchinsky V A, Cogné J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1):34-57. doi: 10.1046/j.1365-246x.2002.01557.x

    CrossRef Google Scholar

    [56] Sorokin A A, Yarmolyuk V V, Kotov A B, et al. Geochronology of Triassic-Jurassic granitoids in the southern framing of the Mongol-Okhotsk fold belt and the problem of Early Mesozoic granite formation in central and eastern Asia[J]. Doklady Earth Sciences, 2004, 399(8):1091-1094.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(594) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint