Citation: | YANG Bin, ZHANG Bin, ZHANG Qingkui, MA Wei, LÜ Fengxiang, ZHAO Mingyuan, CHEN Shuliang, YUAN Xu. Characteristics and geological significance of Early Carboniferous high-Mg andesites in Ma'anshan area, east Inner Mongolia[J]. Geological Bulletin of China, 2018, 37(9): 1760-1770. |
The Early Carboniferous high-Mg andesites in Ma'anshan area of eastern Inner Mongolia have LA-ICP-MS zircon U-Pb age of 346.4±1.4Ma, indicating that they were formed in Early Carboniferous. Ma'anshan high-Mg andesites belong to calc-alkaline series, with SiO2 53.22%-54.22%, MgO 7.21%-10.03%, Al2O3 14.37%-15.94%, CaO 4.81%-5.94%, rich Na, poor K (Na2O 3.87%-4.34%, K2O 0.49%-0.93%), low TFeO/MgO(< 1.5), high Cr(364×10-6-429×10-6), and Ni (204×10-6-211×10-6). Similar to sanukite, all samples show enrichment of LREE and LILE (e.g., Rb, Ba, Sr and K), slight Eu negative anomaly and depletion of HFSE such as Nb, Zr, Ti, Y, Yb and Lu. They are equilibrium products of Sirich melt derived from partial melting of mantle peridotite and subducted oceanic crust, indicating a subduction background and suggesting that they were formed by ocean-continent transformation during the Palaeo-Asian Ocean closure.
[1] | 唐功建, 王强.高镁安山岩及其动力学意义[J].岩石学报, 2010, 26(8):495-512. |
[2] | 曹从周, 田昌烈, 杨芳林.内蒙古索伦山-贺根山蛇绿岩带中席状岩墙群及其地质意义[C]//地质矿产部沈阳地质矿产研究所编.中国北方板块构造论文集(2).北京: 地质出版社, 1987: 125-135. |
[3] | Yogodzinski G M, Kay R W, Volynets O N, et al. Magnesian andesite in the western Aleutian Komandorsky Region:Implications for slab melting and processes in the mantle wedge[J]. Geological Society of America Bulletin, 1995, 107(5):505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2 |
[4] | Tatsumi Y. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, Ⅱ. Melting phase relations at high pressures[J]. Earth and Planetary Science Letters, 1982, 60(2):305-317. doi: 10.1016/0012-821X(82)90009-7 |
[5] | Li J Y. Permian geodynamic setting of Northeast China and adjacen-tregions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224. |
[6] | Robinson P T, Zhou M F, Hu X F, et al. Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 1999, 17(4):423-442. doi: 10.1016/S1367-9120(99)00016-4 |
[7] | Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshanophioliticcomplex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian EarthSciences, 2008, 32(5/6):348-370. |
[8] | Nozaka T, Liu Y. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China[J]. Earth and Planetary Science Letters, 2002, 202:89-104. doi: 10.1016/S0012-821X(02)00774-4 |
[9] | 黄波, 付东, 李树才等.内蒙古贺根山蛇绿岩形成时代及构造启示[J].岩石学报, 2016, 3(1):158-176. |
[10] | Jian P, Koroener A, Windley B F, et al. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia(China):A SHRIMP zircon and geochemical study of the previously presumed integral "Hegenshan ophiolite"[J]. Lithos, 2012, 142:48-66. |
[11] | 王金芳, 李英杰, 李红阳, 等.内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J].地质学报, 2017, 91(8):1776-1795. doi: 10.3969/j.issn.0001-5717.2017.08.009 |
[12] | 赵春荆, 彭玉鲸, 党增欣, 等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社, 1996:1-186. |
[13] | 吴元宝, 郑永飞.锆石成因矿物学研究及对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 |
[14] | Le Maitre R W, Bateman P, Dudek A, et al. A Classification of Igneous Rocks and Glossary of Terms:Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of igneous rocks[M]. Oxford:Blackwell, 1989:1-193. |
[15] | Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2 |
[16] | Peccerillor R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745 |
[17] | Gill J B. Bulk chemical composition of orogenic andesites[C]//Orogenic Andesites and Plate Tectonics. Berlin, Heidelberg: Springer, 1981: 97-167. |
[18] | Tatsumi Y, Ishizaka K. Existence of andesitic primary magma:An example from southwest Japan[J]. Earth and Planetary Science Letters, 1981, 53(1):124-130. doi: 10.1016/0012-821X(81)90033-9 |
[19] | Tatsumi Y, Hanyu T.Geochemical modeling of dehydration and partial melting of subducting lithosphere:Toward a comprehen-siveunderstanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan[J]. Geochemistry Geophysics Geosystems, 2003, 4(9):1081, doi:10.1029/2003GC000530. |
[20] | Tatsumi Y.High-Mg andesites in the Setouchi volcanic belt, southwestern Japan:Analogy to Archean magmatism and continental[J]. Earth and Planetary Science Letters, 2006, 52(1):104-125. |
[21] | Sun S S, McDonough W F. Chemical and isotopic systematics ofoceanic basalts: Implications for mantle composition and processed[C]//Saunders A D, Norry M J. Magmatism in the OceanBasins. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[22] | 邓晋福, 冯艳芳.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J].中国地质, 2010, 37(4):1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025 |
[23] | Rogers G, Saunders A D, Terrell D J, et al. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California Mexico[J]. Nature, 1985, 315(6018):389-392. doi: 10.1038/315389a0 |
[24] | Umino S.Magma mixing in boninite sequence of Chichijima Bonin Islands[J]. Journal of Volcanology and Geothermal Research, 1986, 29(1/4):125-157 |
[25] | Saunders A D, Rogers G, Marriner G F, et al. Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico:Implications for the petrogenesis of post-subduction magmas[J]. Journalof Volcanology and Geothermal Research, 1987, 32(1/3):223-245. |
[26] | Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature, 1990, 347(6294):662-665. doi: 10.1038/347662a0 |
[27] | Atherton M P, Petford N. Generantion of sodium-rich magmas from newly underplanted basaltic crust[J]. Nature, 1993, 362:144-146. doi: 10.1038/362144a0 |
[28] | Shirey S B, Hanson G N. Mantle-derived Archean monzodiorites and trachyandesites[J]. Nature, 1984, 310(10):222-224. |
[29] | Smithies R H. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite[J].Earth and Planetary Science Letters, 2000, 182(1):115-125. doi: 10.1016/S0012-821X(00)00236-3 |
[30] | 张旗, 钱青, 翟明国, 等. Sanukite(赞岐岩)的地球化学特征、成因及地球动力学意义[J].岩石矿物学杂志, 2005, 24(2):117-125. doi: 10.3969/j.issn.1000-6524.2005.02.005 |
[31] | Stern R A, Hanson G N, Shirey S B. Petrogenesis of mantlederived, LILE-enriched Archean monzodiorites and trachyandesites(sanukitoids) in southwestern Superior Province[J]. Canadian Journalof Earth Sciences, 1989, 26:1688-1712. doi: 10.1139/e89-145 |
[32] | Kanei A, Owada M, Nagao T, et al. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc:Evidence from clinopyroxene and whole rock compositions[J]. Lithos, 2004, 75.359-371. doi: 10.1016/j.lithos.2004.03.006 |
[33] | Rollison H R. Using Geochemical Data; Evaluation[J]. Presentation, Interpretation[M]. LongmanGrup, UK Ltd, 1993: 1-275. |
[34] | Smithies R H, Champion D C. The Archaean high-Mg diorite suite:Links to tonalite-trondhjemite-granodiorite mdumatism and implications for Early Archaean crustal growth[J]. Journal of Petrology, 2000:1653-1671. |
[35] | Smithies R H, Champion D C. Adakite, TTG and Archaean crustal evolution.European Geophysical Society[J].Geophysical Research Abstracts, 2003:1630. |
[36] | Shimoda G, Tatsumi Y, Nohda S, et al. Setouchi high-Mg andesites revisited:Geochemical evidence for melting of subducted sediments[J]. Earth and Planetary Science Letters, 1998, 160:479-492. doi: 10.1016/S0012-821X(98)00105-8 |
[37] | Yin J Y, Yuan C, Sun M, et al. Late Carboniferous high-Mg dioritic dikes in westem Junggar NWChina:Geochemical features, petrogenesis and tectonic implications[J]. Gondwana Research, 2010, 17:145-152. doi: 10.1016/j.gr.2009.05.011 |
[38] | Lassiter J C, DePaolo D J. Plume lithosphere interaction in the generation of continental and oceanic flood basalts chemical and isotopic constraints[C]//Mahoney J, Coffin F(eds.), . 1997, Large 145-152. |
[39] | 王玉净, 樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报, 1997, 36(1):58-69. |
[40] | 孙德有, 吴福元, 张艳斌, 等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间-来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版), 2004, 34(2):174-181. |
[41] | Zhou X H, Ying J F, Zhang L C, et al. The petrogenesis of Late Mesozoic volcanic rock and the contributions from ancient Microcontinents:Constraints from the zircon U-Pb dating and Sr-Nd-Pb-Hfisotopic systematics[J]. Earth Science, 2009, 34(1):Ⅰ-10(in Chinesewith English abstract). |
[42] | 李春昱.中同板块构造的轮廓[J].中国地质科学院院报, 1980, 2(1):11-22. |
[43] | 王鸿祯.中国地壳构造发展主要阶段[J].地球科学, 1982, 7(3):155-177. |
[44] | 何国琦, 邵济安.内蒙古东南部(昭盟)西拉木伦河一带早古生代蛇绿岩建造的确定及其大地构造意义[C]//中同北方板块构造文集.武汉: 中国地质大学出版社, 1983: 243-250. |
[45] | 李锦轶.内蒙古东部中朝板块与西伯利亚板块之间古缝合带初步研究[J].科学通报, 1986, 31(14):1093-1096. |
[46] | 唐克东.中朝陆台北侧裙皱代构造发展的几个问题[J].现代地质, 1989, 3(2):195-204. |
[47] | 唐克东.颜竹窍, 张允平, 等.内蒙古缝合带的地质特征与构造演化[J].中国地质科学院沈阳地质矿产所集刊, 1995, 5/6:119-166. |
[48] | Tang K D.Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton[J].Tectonics, 1990, 9:249-260. doi: 10.1029/TC009i002p00249 |
[49] | 邵济安, 牟保磊, 何国琦, 等.华北北部在古亚洲洋域与太平洋域构造叠加过程中的地质作用[J].中国科学(D辑), 1997, 27:390-394. |
[50] | 施光海, 苗来成, 张福勤, 等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报, 2004, 49(4):384-389. doi: 10.3321/j.issn:0023-074X.2004.04.015 |
[51] | Chen B, Jahn B M, Wilde S, et al. Two contrasting Paleozoic magmatic belts in northem Inner Mongolia, China:Petrogenesis and tectonic implications[J].Tectonophysics, 2000, 328:157-182. doi: 10.1016/S0040-1951(00)00182-7 |
[52] | 苗来成, 范蔚窑, 张福勤, 等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报, 2003, 48(22):2315-2323. doi: 10.3321/j.issn:0023-074X.2003.22.004 |
[53] | Furukawa Y, Tatsumi Y. Melting of a subducting slab andproduction of high-Mg andesite magmes:Unusual magmatism in SW Japan[J]. Geophys. Res. Lett. 1999, 26:2271-2274. doi: 10.1029/1999GL900512 |
[54] | Tatsumi Y. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction:Generation of high-Mg andesites in the Setouchi volcanic belt, Southwest Japan[J]. Geology, 2001, 29:323-326. doi: 10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2 |
[55] | Sarbas B. Geochemistry of oceanic island-arc and active continentalmargin volcanic suites: Some statistical evaluations and implications using the database GEOROC[C]//American Geophysical Union, Fall Meeting. Mainz, Germany: AGU, 2002, V62B-1401. |
[56] | Wilson M. Active continental margins[C]//Wilson M. Igneous Petrogenesis.Amsterdam, Netherlands: Springer, 1989: 191-225. |
Geotectonic position of the northern part of Da Hinggan Mountains
Simplified geological map of the study area
Macrofeatures(a) and microscope(b) characteristics of Ma' anshan high-Mg andesite
CL images and ages of zircons from the Ma' anshan high-Mg andesites
Zircon U-Pb concordia diagram for high-Mg andesites from Ma' anshan area
The uolcanic rock classification diugrams
Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element spidergrams(b) for high-Mg andesites from Ma' anshan area
Plots of SiO2-MgO and SiO2-TFeO/MgO for high-Mg andesites from Ma' anshan area
The discrimination diagrams for high-Mg andesites
Nb-Nb/Th and Zr-NbN/ZrN discrimination diagrams for tectonic setting