2018 Vol. 37, No. 6
Article Contents

ZHU Qiang, HU Zhaoqi, SHI Ke, WU Libin, JIANG Laili. Zircon U-Pb age and geochemistry of the dioritic rocks in Chuzhou area in Anhui Province: Petrogenesis and dynamics significance[J]. Geological Bulletin of China, 2018, 37(6): 1101-1112.
Citation: ZHU Qiang, HU Zhaoqi, SHI Ke, WU Libin, JIANG Laili. Zircon U-Pb age and geochemistry of the dioritic rocks in Chuzhou area in Anhui Province: Petrogenesis and dynamics significance[J]. Geological Bulletin of China, 2018, 37(6): 1101-1112.

Zircon U-Pb age and geochemistry of the dioritic rocks in Chuzhou area in Anhui Province: Petrogenesis and dynamics significance

  • LA-ICP-MS zircon 206Pb/238U ages of two diorite porphyrite samples from Chuzhou area of Anhui Province are 126.19±0.44Ma and 126.4±0.7Ma, respectively. Previous study shows that the emplacement age of dioritic rocks should be 120~130Ma, sug-gesting early Cretaceous. Geochemical study shows the values of SiO2 vary from 56.75% to 60.90%, with the characteristics of high Al2O3(14.82%~15.77%), MgO(>4%), Sr(>750×10-6), Sr/Y(62~110), and La/Yb(20~36) but low Y, Yb, LREE as well as enrichment of LREE and LILE but depletion of HREE, with indistinct Eu anomaly, indicating typical adakitic rocks. Mg# values range from 39 to 45, K2O/Na2O vary from 0.57 to 0.96, 0.75 on average, significantly lower than the values of the adakitic rocks in the thickened crustal of Dabie orogenic belt; Ce/Pb ratios are low, mostly concentrated in the range of 3~5, similar to the values of the continental crust but significantly lower than those of the oceanic crust. The authors hold that the adakitic rocks in Chuzhou area of Anhui was formed by partial melting of delaminated lower crust, and the reaction of upward migrating adakitic magmas and mantle peridotite led to the increase of MgO, Cr and Ni melt content. In Early Cretaceous, eastern China crustal extension thinning resulted in lower crust delamination, and mantle material was involved in bringing Cu, Au and other ore-forming elements; hence adakitic rocks can be used as an important prospecting indicator in this area.

  • 加载中
  • [1] 周力, 张均, 王健, 等.安徽张八岭地区管店岩体成因及其与上成金矿床的关系[J].地质科技情报, 2014, 33(1):32-40.

    Google Scholar

    [2] 胡子龙. 皖东滁州地区燕山期岩浆岩地球化学特征与铜金成矿[D]. 中国科学技术大学硕士学位论文, 2015: 6-16.http://cdmd.cnki.com.cn/Article/CDMD-10358-1015615550.htm

    Google Scholar

    [3] 张旗, 王焰, 钱青, 等.中国东部燕山期埃达克岩的特征及其构造成矿意义[J].岩石学报, 2001(2):236-244.

    Google Scholar

    [4] 张旗, 王元龙, 王焰.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr, Nd同位素制约[J].岩石学报, 2001, 4:505-513.

    Google Scholar

    [5] 王元龙, 王焰, 张旗, 等.铜陵地区中生代中酸性侵入岩的地球化学特征及其成矿地球动力学意义[J].岩石学报, 2004, 2:325-338.

    Google Scholar

    [6] 汪洋, 邓晋福, 姬广义.长江中下游地区早白垩世埃达克质岩的大地构造背景及其成矿意义[J].岩石学报, 2004, 2:297-314.

    Google Scholar

    [7] 王强, 许继峰, 赵振华, 等.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约[J].中国科学(D辑), 2003, 4:323-334.

    Google Scholar

    [8] 王强, 赵振华, 许继峰, 等.鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J].岩石学报, 2004, 2:351-360.

    Google Scholar

    [9] Wang Q, Xu J F, Zhao Z H, et al. Cretaceous high potassium intrusive rocks in the Yueshan-Hongzhen area of east China:adakites inan extension al tectonic regime within a continent[J]. Geochemical Journal, 2004, 38:417-434. doi: 10.2343/geochemj.38.417

    CrossRef Google Scholar

    [10] Wang Q, Zhao Z H, Bao Z W, et al. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocksand the associated porphyry copper-molybdenum mineralization in south-east Hubei, east China[J]. Resource Geology, 2004, 54:137-152. doi: 10.1111/rge.2004.54.issue-2

    CrossRef Google Scholar

    [11] Wang Q, Wyman D A, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in theLuzong area, Anhui Province (eastern China):implications for geodynamics and Cu-Au mineralization[J]. Lithos, 2006, 89:424-446. doi: 10.1016/j.lithos.2005.12.010

    CrossRef Google Scholar

    [12] Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology 2006, 47:119-144. doi: 10.1093/petrology/egi070

    CrossRef Google Scholar

    [13] Wang Q, Wyman D A, Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:implications for partial melting and delamination of thickened lower crust[J]. Geochemical Cosmochimica Acta, 2007, 71:2609-2636. doi: 10.1016/j.gca.2007.03.008

    CrossRef Google Scholar

    [14] Wang Q, Wyman D A, Xu J F, et al. Partial melting of thickened or delaminated lower crust in the middle of Eastern China:implications for Cu-Au mineralization[J]. Journal of Geology, 2007, 115:149-161. doi: 10.1086/510643

    CrossRef Google Scholar

    [15] Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of eastern China:partial melting of delaminated lower continental crust?[J] Geology, 2002, 30:1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    CrossRef Google Scholar

    [16] 谢成龙, 朱光, 牛漫兰, 等.滁州中生代火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质论评, 2007, 53(5):642-655.

    Google Scholar

    [17] Xie G Q, Mao J W, Li L R, et al. Geochemistry and Nd-Sr isotopic studies ofLate Mesozoic granitoids in the southeastern Hubei province, Middle-Lower Yangtze River belt, Eastern China:petrogenesis and tectonic setting[J]. Lithos, 2008, 104:216-230. doi: 10.1016/j.lithos.2007.12.008

    CrossRef Google Scholar

    [18] Ling M X, Wang F Y, Ding X, et al. Cretaceous ridge subduction along the lower Yangtze river belt, eastern China[J].Economic Geology, 2009, 104:303-321. doi: 10.2113/gsecongeo.104.2.303

    CrossRef Google Scholar

    [19] Ling M X, Wang F Y, Ding X, et al. Different origins of adakites-from the Dabie Mountains and the Lower Yangtze River belt in eastern China:geochemical constraints[J]. International Geology Review, 2011, 53:727-740. doi: 10.1080/00206814.2010.482349

    CrossRef Google Scholar

    [20] Li J W, Zhao X F, Zhou M F, et al. Late Mesozoic magmatism from the Daye region, eastern China:U-Pb ages, petrogenesis, and geodynamics implications[J]. Contribution to Mineralogy and Petrology, 2009, 157:383-409. doi: 10.1007/s00410-008-0341-x

    CrossRef Google Scholar

    [21] Liu S A, Li S G, He Y S, et al. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:implications for petrogenesis and Cu-Au mineralization[J]. Geochimica et Cosmochimica Acta, 2010, 74:7160-7178. doi: 10.1016/j.gca.2010.09.003

    CrossRef Google Scholar

    [22] 孙卫东, 凌明星, 杨晓勇, 等.洋脊俯冲与斑岩铜金矿成矿[J].中国科学(D辑), 2010, 2:127-137.

    Google Scholar

    [23] Sun W D, Zhang H, Ling M X, et al. The genetic association of adakites and Cu-Au ore deposits[J]. International Geology Review, 2011, 53:691-703. doi: 10.1080/00206814.2010.507362

    CrossRef Google Scholar

    [24] Sun W D, Ling M X, Chung S L, et al. Geochemical constraints on adakites of different origins and copper mineralization[J]. Journal of Geology, 2012, 120:105-120. doi: 10.1086/662736

    CrossRef Google Scholar

    [25] 谢建成, 陈思, 孙卫东, 等.安徽铜陵早白垩世埃达克质岩地球化学:成岩成矿制约[J].岩石学报, 2012, 10:3181-3196.

    Google Scholar

    [26] Chen B, Jahn B M, Suzuki K.Petrological and Nd-Sr-Os isotopic constraints onthe origin of high-Mg adakitic rocks from the North China Craton:tectonic implications[J]. Geology, 2013, 41:91-94. doi: 10.1130/G33472.1

    CrossRef Google Scholar

    [27] Yang Y Z, Chen F K, Siebel W, et al. Age and composition of CuAu related rocks from the lower Yangtze River belt:Constraints on paleo-Pacific slab roll-back beneath eastern China[J].Lithos, 2014, 200/203:331-346.

    Google Scholar

    [28] Defant M J, Drummond M S.Derivation of some modern arc magmas by meltingof young subducted lithosphere[J]. Nature, 1990, 347:662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [29] Defant M J, Kepezhinskas P.Evidence suggests slab melting in arc magmas[J].Eos Transactions, 2001, 82:62-65.

    Google Scholar

    [30] Mungall J E.Roasting the mantle:slab melting and the genesis of major Au and Aurich Cu deposits[J]. Geology, 2002, 30:915-918. doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2

    CrossRef Google Scholar

    [31] Oyarzun R, Márquez A, Lillo J, et al. Giant versus small porphyry-copper deposits of Cenozoic age in northern Chile:adakitic versus normal calcalkaline magmatism[J]. Mineralium Deposita, 2001, 36:794-798. doi: 10.1007/s001260100205

    CrossRef Google Scholar

    [32] Sajona F G, Maury R C.Association of adakites with gold and copper mineralization in the Philippines. Comptes Rendus de l'Académie des Sciences-Series ⅡA[J].Earth and Planetary Science, 1998, 326:27-34.

    Google Scholar

    [33] Thieblemont D, Stein G, Lescuyer J L. Gisementsepithermaux et porphyriques:laconnexionadakite. Comptes Rendus de l'Academie des Science-Series[J].Earth and Planetary Science, 1997, 325:103-109.

    Google Scholar

    [34] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 20009, 51(1/2):537-571.

    Google Scholar

    [35] Sun S S, McDonough W F. Chemical and isotopic systematics ofo-ceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic-Basins. Geological Society, London, Special Publication, 1989, 42(1): 313-345.

    Google Scholar

    [36] 李学明, 李彬贤, 张巽, 等.安徽管店岩体的同位素地质年龄和郯庐断裂带的动力学变质作用[J].中国科学技术大学学报, 1985, 15(增刊):254-261.

    Google Scholar

    [37] 牛漫兰.张八岭地区中生代岩体中黑云母的40Ar-39Ar年龄及其地质意义[J].地质科学, 2006, 41(2):217-225.

    Google Scholar

    [38] 资锋, 王强, 唐功建, 等.皖中管店岩体的锆石年代学与地球化学:岩石成因和动力学意义[J].地球化学, 2008, 37(5), 462-480.

    Google Scholar

    [39] Wang Q, Wyman D A, Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:implications for partial melting and delamination of thickened lower crust[J].Geochemical Cosmochimica Acta, 2007, 71:2609-2636. doi: 10.1016/j.gca.2007.03.008

    CrossRef Google Scholar

    [40] Huang F, Li S G, Dong F, et al. High-Mg adakiticrocks in the Dabie orogeny, Central China:Implications for foundering mechanism of lower continental crust[J].Chemical Geology, 2008, 255(1/2):1-13.

    Google Scholar

    [41] Sen C, Dunn T.Dehydration melting of a basaltic compositionam-phibolite at 1.5 and 2.0GPa:Implications for the origin of adakite[J].Contributions to Mineralogy and Petrology, 1994, 117(4):394-409. doi: 10.1007/BF00307273

    CrossRef Google Scholar

    [42] Taylor S R, McLennan S M.The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell Scientific Publications, 1985:1-100.

    Google Scholar

    [43] Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L, Holland H D, Turekian K K. The Crust Vol. 3 Treatiseon Geochemistry. Oxford: Elsevier-Pergamon, 2003: 1-64.

    Google Scholar

    [44] Zhu G, Xie C L, Xiang B W, et al. Genesis of the Hongzhen metamorphic core complex and its tectonic implications[J]. Science in China (D), 2007, 50:649-659. doi: 10.1007/s11430-007-0032-x

    CrossRef Google Scholar

    [45] Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J].Earth and Planetary Science Letters, 2007, 262(3/4):533-542.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(812) PDF downloads(3) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint