2018 Vol. 37, No. 6
Article Contents

ZHU Qiang, ZENG Zuoxun, LI Tianbin, WANG Cheng, LIU Gengsheng. Response of the North China Craton to the Rodinia supercontinent breakup: New evidence from petrochemistry, chronology and Hf isotope of the gabbro in Xiaosongshan area of northern Helan Moun-tain[J]. Geological Bulletin of China, 2018, 37(6): 1075-1086.
Citation: ZHU Qiang, ZENG Zuoxun, LI Tianbin, WANG Cheng, LIU Gengsheng. Response of the North China Craton to the Rodinia supercontinent breakup: New evidence from petrochemistry, chronology and Hf isotope of the gabbro in Xiaosongshan area of northern Helan Moun-tain[J]. Geological Bulletin of China, 2018, 37(6): 1075-1086.

Response of the North China Craton to the Rodinia supercontinent breakup: New evidence from petrochemistry, chronology and Hf isotope of the gabbro in Xiaosongshan area of northern Helan Moun-tain

More Information
  • Zircon LA-ICP-MS U-Pb dating, petrochemistry and zircon Hf isotope study of the gabbros from Xiaoshongshan area of the North Helanshan show that the emplacement crystallization age is 835.5±5.3Ma, suggesting early Neoproterozoic. The gab-bros belong to intraplate tholeiite basalt series, and are slightly rich in LREE, rich in Rb, Ba, La, and slightly depleted in HFSE, Th, Nb, Ta, Zr and Hf; Hf isotopic data of the gabbros show high εHf(t) values (5.83~7.87), the single stage model age tDM1 is 1075~1155Ma, and the two stage model age tDM2 is 1176~1289Ma. Comprehensive studies suggest that the magma of gabbros originated from an enriched mantle in the Mesoproterozoic, and was formed in an intraplate extension setting on the western margin of the North China continental blocks. The authors thus infer that this magma event was a response of the North China continental blocks to the breakup of the Rodinia supercontinent. Therefore, it was also a part of the supercontinent.

  • 加载中
  • [1] Li X H, Li W X, Li Z X, et al. 850~790Ma bimodal volcanic and intrusive rocks in northern Zhe jiang, South China:A major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 2008, 102:341-357. doi: 10.1016/j.lithos.2007.04.007

    CrossRef Google Scholar

    [2] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in So-uth China:Constraints from SHRIMP U-Pb zircon age, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrain Research, 2009, 174:117-128. doi: 10.1016/j.precamres.2009.07.004

    CrossRef Google Scholar

    [3] Ye M F, Li X H, Li W X, et al. SHRIMP U-Pb zircon geochornological and geochemical evidence for early NeoPorteorzoic Sibaoan magmafic arc along the southeastem margin of Yangtze Block[J]. Gond-wana Research, 2007, 12:144-156. doi: 10.1016/j.gr.2006.09.001

    CrossRef Google Scholar

    [4] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia:Did it start with a mantle plu-me beneath South China[J]. Earth Planetary Science Letter, 1999, 173:171-181. doi: 10.1016/S0012-821X(99)00240-X

    CrossRef Google Scholar

    [5] Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:Evidence for a mantle superplume that broke-up Rodinia[J]. Precambrain Research, 2003, 2:85-109.

    Google Scholar

    [6] 林广春, 李献华, 李武显.川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学:岩石成因与构造意义[J].中国科学(地球科学), 2006, 36:630-645.

    Google Scholar

    [7] Chen Y, Xu B, Zhan S, et al. First mid-Neoproterozoic paleomag-netic results from the Tarim Basin(NWChina) and their geodynamicimplications[J]. Precambrian Research, 2004, 133:271-281. doi: 10.1016/j.precamres.2004.05.002

    CrossRef Google Scholar

    [8] Zhang C L, Li Z X, Li X H, et al. Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, northwest China:Age, geochemistry and implications for the rifting of Rodinia[J]. Int. Gondwana Research, 2006, 48:112-128.

    Google Scholar

    [9] Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for Precambrianevolution of the Tarim Platform andsurroungdings[J]. Precambrian Research, 2008, 160:94-107. doi: 10.1016/j.precamres.2007.04.025

    CrossRef Google Scholar

    [10] 李献华, 李正祥, 周汉文, 等.川西南关刀山岩体的SHRIMP锆石U-Pb年龄、元素和Nd同位素地球化学——岩石成因与构造意义[J].中国科学(地球科学), 2002, 32(增刊):60-68.

    Google Scholar

    [11] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 51:79-100.

    Google Scholar

    [12] Zhou J B, Li X H, Ge W, et al. Age and origin of middle Neopro-terozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia[J]. Gond. Res., 2007, 12:184-197. doi: 10.1016/j.gr.2006.10.011

    CrossRef Google Scholar

    [13] Zhang C L, Ye H M, Wang A G, et al. Geochemistry of the Neoproterozoic diabase and basalt in South of Tarim Plate:Evidence For the Neoproterozoic Breakup of the Rodinia super-continent in south of Tarim[J].Acta Petrologica Sinica, 2004, 20(3):473-482.

    Google Scholar

    [14] Zhu W B, Zheng B H, Shu L S, et al. Geochemistry and SHRIMP U-Pb zircon geochronology of the Korla maficdykes:Constrains on the Neoproterozoic continental breakup inthe Tarim Block, northwest China[J]. Journal of Asian Earth Sciences, 2011, 2:791-804.

    Google Scholar

    [15] Shu L S, Faure M, Yu J H, et al. Geochronological and geochemical features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 2011, 87:263-276.

    Google Scholar

    [16] 崔晓庄.川西峨边地区金口河辉绿岩脉SHRIMP锆石U-Pb年龄及其对Rodinia裂解的启示[J].地质通报, 2012, 31(7):1132-1140.

    Google Scholar

    [17] 李献华, 李正祥, 周汉文等.川西南关刀山岩体的SHRIMP锆石U-Pb年龄、元素和Nd同位素地球化学——岩石成因与构造意义[J].中国科学(地球科学), 2003, 32:62-70.

    Google Scholar

    [18] 张传林, 叶海敏, 王爱国, 等.塔里木西南缘新元古代辉绿岩及玄武岩的地球化学特征:新元古代超大陆(Rodinia)裂解的证据[J].岩石学报, 2004, 20(3):442-484.

    Google Scholar

    [19] 胡建, 邱检生, 王汝成, 等.新元古代Rodinia超大陆裂解事件在扬子北东缘的最初响应:东海片麻状碱性花岗岩的锆石U-Pb年代学及Nd同位素制约[J].岩石学报, 2007, 6:107-119.

    Google Scholar

    [20] 王清海, 杨德彬, 许文良.华北陆块东南缘新元古代基性岩浆活动:徐淮地区辉绿岩床群岩石地球化学、年代学和Hf同位素证据[J].中国科学(地球科学), 2011, 6:796-815.

    Google Scholar

    [21] Peng P, Bleeker W, Ernst R E, et al. U-Pb baddeleyite ages, distribution andgeochemistry of 925Ma mafic dykes and 900Ma sills in the NorthChina craton:evidencefor a Neoproterozoic mantle plume[J]. Lithos, 2011, 127:210-221. doi: 10.1016/j.lithos.2011.08.018

    CrossRef Google Scholar

    [22] Peng P, Zhai M G, Richard E, et al. A 1.78Ga Large Igneous Province in the North China Craton:the Xiong'er Volcanic Province and the North China Dyke Swarm[J].Lithos, 2007, 3:260-280.

    Google Scholar

    [23] Peng P, Zhai M G, Li Z, et al. Neoproterozoic (~820Ma)mafic dyke swarms in the North China craton: implication for a conjoint tothe Rodinia supercontinent[C]//Abstracts, 13th Gondwana Conference, Dali, China, 2008: 160-161.

    Google Scholar

    [24] Liu S, Zou H B, Hu R Z, et al. Mesozoic mafic dikes from the Shandong Peninsula, North China Craton:petrogenesis and tectonic implications[J].Geochemical Journal, 2006, 40:181-195. doi: 10.2343/geochemj.40.181

    CrossRef Google Scholar

    [25] Liu S, Hu R Z, Gao S, et al. U-Pb zircon age, geochemical and SrNd isotopic data asconstraints on the petrogenesis and emplacement time of the Precambrian mafic dykes warms in the North China Craton (NCC)[J]. Lithos, 2012, 140/141:38-52. doi: 10.1016/j.lithos.2012.01.002

    CrossRef Google Scholar

    [26] 郑永飞.新元古代超大陆构型中华南的位置[J].科学通报, 2004, 8:3-5.

    Google Scholar

    [27] Zhai M G, Shao J, Hao J, et al. Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia[J].Gondwana Research, 2003, 6:171-183. doi: 10.1016/S1342-937X(05)70968-0

    CrossRef Google Scholar

    [28] Shao J A, Zhai M G, Zhang L G, et al. Identification of five stages of dike swarms in the Shanxi-Hebei-Inner Mongolia border area and itstectonic implications[J]. Acta Geology Sinica, 2004, 78:320-330.

    Google Scholar

    [29] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and traceelements of anhydrousminerals by LA-ICP-MS without applying aninternal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [30] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite inter-actions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements inzircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [31] Segal H L, Platzner T. Accurate isotope ratio measurements of yt-terbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure[J]. Journal of Analytical Atomic Spectrometry, 2003, 18:1217-1223. doi: 10.1039/b307016f

    CrossRef Google Scholar

    [32] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27:1391-1399. doi: 10.1039/c2ja30078h

    CrossRef Google Scholar

    [33] Wu Y B, Zheng Y F. Genesis of zircon and its constranints oninterpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49:1554-1569. doi: 10.1007/BF03184122

    CrossRef Google Scholar

    [34] 彭澎, 翟明国.华北陆块前寒武纪两次重大地质事件的特征和性质[J].地球科学进展, 2002, 17(6):818-825.

    Google Scholar

    [35] 陆松年, 李怀坤, 陈志宏, 等.新元古时期中国古大陆与罗迪尼亚超大陆的关系[J].地学前缘, 2004, 11(2):515-523.

    Google Scholar

    [36] Kusky T M, Li J H. Paleoproterozoic tectonic evolution of the North China Craton[J]. Asian Earth Science, 2003, 22:383-397. doi: 10.1016/S1367-9120(03)00071-3

    CrossRef Google Scholar

    [37] Liu Y Q, Gao L Z, Liu Y X, et al. Zircon U-Pb Dating for the Earliest Neoproterozoic Mafic Magmatism in the Southern Margin of the North China Block[J].Chinese Science Bulletin, 2005, 51:2375-2382.

    Google Scholar

    [38] Wilde S A, Zhao G C, Sun M. Development of the North China Craton during the late Archean and its final amalgamation at 1.8 Ga:Some speculation on its position within a global Paleoproterozoic Supercontinent[J]. Gonddwana Research, 2002, 5:85-94. doi: 10.1016/S1342-937X(05)70892-3

    CrossRef Google Scholar

    [39] Zhai M G, Liu W J. Palaeoproterozoic tectonic history of the North China Craton:A review[J]. Precambrian Research, 2003, 122:183-199. doi: 10.1016/S0301-9268(02)00211-5

    CrossRef Google Scholar

    [40] Zhao G C, Wilde S A, Cawood P A, et al. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geololy Review, 1998, 40:706-721. doi: 10.1080/00206819809465233

    CrossRef Google Scholar

    [41] Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton:Lithological, geochemical, structural and p-t path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107:45-73. doi: 10.1016/S0301-9268(00)00154-6

    CrossRef Google Scholar

    [42] Zhao G C, Sun M, Wilde S A, et al. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:Records inthe North China Craton[J]. Gonddwana Research, 2003, 6:417-434. doi: 10.1016/S1342-937X(05)70996-5

    CrossRef Google Scholar

    [43] Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton:Impli-cations for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 2000, 103:55-88. doi: 10.1016/S0301-9268(00)00076-0

    CrossRef Google Scholar

    [44] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J].Precambrian Research, 2005, 1367:172-202.

    Google Scholar

    [45] Zhao G C, He Y H, Sun M, et al. The Xiong'er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Meso-proterozoic Columbia Supercontinent[J].Gondwana Research, 2009, 16:170-181. doi: 10.1016/j.gr.2009.02.004

    CrossRef Google Scholar

    [46] He Y H, Zhao G C, Sun M, Han Y, et al. Petrogenesis and tecton-ic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton:constraints from bulk-rock geochemistry and Sr-Nd isotopic composition[J]. Lithos, 2010, 114:186-199. doi: 10.1016/j.lithos.2009.08.008

    CrossRef Google Scholar

    [47] 黄喜峰, 钱壮志, 孙保平, 等.贺兰山小松山地区逆冲推覆构造特征及演化[J].西北大学学报, 2011, 41(2):273-277.

    Google Scholar

    [48] LeRoex A P, Dick H J, Reid A M, et al. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouvet triple junction and 11° east[J]. J. Pet-rol., 1983, 24:267-318. doi: 10.1093/petrology/24.3.267

    CrossRef Google Scholar

    [49] Condie K C. Sources of Proterozoic mafic dykes warms:Constraints from Th/Ta and La/Yb ratios[J]. Precambrian Research, 1997, 81:3-14. doi: 10.1016/S0301-9268(96)00020-4

    CrossRef Google Scholar

    [50] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China:Insitu analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61:237-269. doi: 10.1016/S0024-4937(02)00082-8

    CrossRef Google Scholar

    [51] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23:185-220.

    Google Scholar

    [52] Macdonald R, Rogers N W. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift[J]. East Africa Journal of Petrology, 2001, 42:877-900.

    Google Scholar

    [53] 姜常义, 贾承造, 李良辰, 等.新疆麻扎尔塔格地区铁富集型高镁岩浆源区[J].地质学报, 2004, 78(6):771-779.

    Google Scholar

    [54] 郑海飞.微量元素比值研究岩浆源区成分的可靠性:玄武岩熔融实验研究[J].矿物学报, 1998, 18(4):541-545.

    Google Scholar

    [55] Rollison H R. 岩石地球化学[M]. 杨学明(译). 合肥: 中国科学技术大学出版社, 2000.

    Google Scholar

    [56] Pearce J A, Norry M J. Petrologenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69:33-47. doi: 10.1007/BF00375192

    CrossRef Google Scholar

    [57] 汪云亮, 张成江, 修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报. 2001, 17(3):413-421.

    Google Scholar

    [58] Zhang C L, Li Z X, Li X H, et al.Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, northwest China:Age, geochemistry and implications for the rifting of Rodinia[J]. International Geololy Review, 2006, 48:112-128. doi: 10.2747/0020-6814.48.2.112

    CrossRef Google Scholar

    [59] 陆松年, 相振群, 李怀坤, 等.华北克拉通对罗迪尼亚超大陆事件的响应——GOSEN连接假设[J].地质学报, 2012, 9:70-80.

    Google Scholar

    宁夏回族自治区地质环境监测总站. 1: 25万吉兰泰幅区域地质调查报告. 2008.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(652) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint