2018 Vol. 37, No. 4
Article Contents

ZHANG Ruoyu, ZENG Zhongcheng, CHEN Ning, LI Qi, WANG Tianyi, ZHAO Jianglin. The discovery of Middle-Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance[J]. Geological Bulletin of China, 2018, 37(4): 545-558.
Citation: ZHANG Ruoyu, ZENG Zhongcheng, CHEN Ning, LI Qi, WANG Tianyi, ZHAO Jianglin. The discovery of Middle-Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance[J]. Geological Bulletin of China, 2018, 37(4): 545-558.

The discovery of Middle-Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance

More Information
  • The syenogranite is located in the Paxialayidang ditch of the Altun Mountains. The U-Pb dating of zircons from the syenogranite using LA-ICP-MS yielded a group age of 455.1±3.6Ma, indicating that the crystallization of the intrusion occurred in Middle-Late Ordovician period. The geochemical analysis shows that major elements are characterized by high SiO2, Al2O3 and K2O and low TiO2, CaO and MgO, which suggests that syenogranite belongs to the typical high-K calc-alkaline series with deeply peraluminous feature. In addition, the rocks are enriched in total REE. The samples are enriched in LREE (light rare earth elements) and depleted in HREE (heavy rare earth elements) with Eu anomalies. The chondrite-normalized REE patterns show right-oblique type. The syenogranite is enriched in large ion lithophile elements of Rb, Th, K and depleted in high field strength elements of Ba, Sr, Ti, with the characteristics of S-type granite. In combination with the diagrams for discriminating compositions of original rocks, the authors hold that the rocks were formed by the partial melting of meta-pelitic sedimentary rocks from the lower crust. Combined with the data of regional geological characteristics, the authors consider that the syenogranite was formed in the transitional tectonic setting from the compressional to the extensional regime, thus belonging to the post-collisional granites. It is shown that Azhong Block and Qaidam Block entered into a transformation period from compression to extension during Middle-Late Ordovician period.

  • 加载中
  • [1] 刘良, 车自成, 王焰, 等.阿尔金高压变质岩带的特征及其构造意义[J].岩石学报, 1999, 1:57-64.

    Google Scholar

    [2] 校培喜, 高晓峰, 康磊, 等.阿尔金-东昆仑西段成矿带地质背景研究[M].北京:地质出版社, 2014.

    Google Scholar

    [3] 曹玉亭, 刘良, 王超, 等.阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J].岩石学报, 2010, 26(11):3259-3271.

    Google Scholar

    [4] 康磊, 刘良, 曹玉亭, 等.阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J].岩石学报, 2013, 29(9):3039-3048.

    Google Scholar

    [5] 刘良, 康磊, 曹玉亭, 等.南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J].中国科学:地球科学, 2015, 45(8):1126-1137.

    Google Scholar

    [6] 吴才来, 郜源红, 雷敏, 等.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J].岩石学报, 2014, 30(8):2297-2323.

    Google Scholar

    [7] 王超, 刘良, 张安达, 等.阿尔金造山带南缘岩浆混合作用:玉苏普阿勒克塔格岩体岩石学和地球化学证据[J].岩石学报, 2008, 24(12):2809-2819.

    Google Scholar

    [8] 张若愚, 曾忠诚, 朱伟鹏, 等.阿尔金造山带帕夏拉依档岩体锆石U-Pb年代学、地球化学特征及地质意义[J].地质论评, 2016, 62(5):1283-1299.

    Google Scholar

    [9] 李琦, 曾忠诚, 陈宁, 等.阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义[J].现代地质, 2015, 6:1271-1283. doi: 10.3969/j.issn.1000-8527.2015.06.002

    CrossRef Google Scholar

    [10] Anderson T.Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemcal Geology, 2002, 192(1/2):59-79.

    Google Scholar

    [11] Ludwig K R. Isoplot/Exversion 2.49. A Geochronological Toolkit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication, 2003, 1:1-56.

    Google Scholar

    [12] Yuan H, Wu F, Gao S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Science Bulletin, 2003, 48(22):2411-2421.

    Google Scholar

    [13] Maniar P D. Tectonic discrimination of granitoids[J]. Geol. Soc. Am. Bull., 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [14] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [15] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [16] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [17] Whelan J F, Cobb J C, Rye R O. Stable isotope geochemistry of sphalerite and other mineral matter in coal beds of the Illinois and Forest City basins[J]. Economic Geology, 1988, 83(5):990-1007. doi: 10.2113/gsecongeo.83.5.990

    CrossRef Google Scholar

    [18] Eby G N. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1):115-134.

    Google Scholar

    [19] Chappell B W. Two contrasting granite type[J]. Pacific Geology, 1974, 8:173-174.

    Google Scholar

    [20] Davies J H, Blanckenburg F V. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth & Planetary Science Letters, 1995, 129(1/4):85-102.

    Google Scholar

    [21] 张宏飞, 高山, 张本仁, 等.大别山地壳结构的Pb同位素地球化学示踪[J].地球化学, 2001, 30(4):395-401.

    Google Scholar

    [22] 李曙光, 李秋立, 侯振辉, 等.大别山超高压变质岩的冷却史及折返机制[J].岩石学报, 2005, 21(4):1117-1124.

    Google Scholar

    [23] 李曙光.大别山超高压变质岩折返机制与华北-华南陆块碰撞过程[J].地学前缘, 2004, 11(3):63-70.

    Google Scholar

    [24] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [25] Pearce J A, Deng W. The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986)[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):215-238. doi: 10.1098/rsta.1988.0127

    CrossRef Google Scholar

    [26] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1):43-55.

    Google Scholar

    [27] Harris N B W. Geochemical characteristics of collision-zone magmatism[J]. Collision Tectonics, 1986, 19(5):67-81.

    Google Scholar

    [28] 杨文强, 刘良, 丁海波, 等.南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J].岩石学报, 2012, 28(12):4139-4150.

    Google Scholar

    [29] 张建新, 于胜尧, 李云帅, 等.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J].岩石学报, 2015, 31(12):3531-3554.

    Google Scholar

    [30] 刘良, 张安达, 陈丹玲, 等.阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J].地学前缘, 2007, 14(1):98-107.

    Google Scholar

    [31] 康磊, 校培喜, 高晓峰, 等.茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因:对阿尔金南缘早古生代构造-岩浆演化的启示[J].岩石学报, 2016, 32(6):1731-1748.

    Google Scholar

    [32] 马中平, 李向民, 徐学义, 等.南阿尔金山清水泉镁铁-超镁铁质侵入体LA-ICP-MS锆石U-Pb同位素定年及其意义[J].中国地质, 2011, 38(4):1071-1078.

    Google Scholar

    [33] 董洪凯, 郭金城, 陈海燕, 等.新疆阿尔金地区长沙沟一带奥陶纪侵入岩及其演化特征[J].西北地质, 2014, 47(4):73-87.

    Google Scholar

    [34] 董增产, 校培喜, 奚仁刚, 等.阿尔金南缘构造混杂岩带中角闪辉长岩地球化学特征及同位素测年[J].地质论评, 2011, 57(2):207-216.

    Google Scholar

    [35] 徐旭明, 郭金城, 陈海燕, 等.新疆阿尔金长沙沟一带奥陶纪辉长岩SHRIMP锆石U-Pb年龄及其地球化学特征[J].西北地质, 2014, 47(4):156-162.

    Google Scholar

    [36] 关锁平, 吴才来, 陈其龙.阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J].地质通报, 2007, 26(10):1385-1392.

    Google Scholar

    陕西省地质调查中心. 新疆阿尔金地区1: 5万J45E010020等六幅区域地质矿产调查报告. 2017.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(577) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint