2018 Vol. 37, No. 4
Article Contents

LI Ruibao, PEI Xianzhi, WANG Xing, CHEN Youxin, LI Zuochen, LIU Chengjun, WANG Meng, PEI Lei, ZHANG Yu, YAN Quanzhi, PENG Sizhong, HU Chenguang. Zircon U-Pb dating, geochemical characteristics and tectonic setting of intermediate-basic volcanic rocks from Middle Cambrian Shengou Formation, eastern Qilian orogen[J]. Geological Bulletin of China, 2018, 37(4): 589-603.
Citation: LI Ruibao, PEI Xianzhi, WANG Xing, CHEN Youxin, LI Zuochen, LIU Chengjun, WANG Meng, PEI Lei, ZHANG Yu, YAN Quanzhi, PENG Sizhong, HU Chenguang. Zircon U-Pb dating, geochemical characteristics and tectonic setting of intermediate-basic volcanic rocks from Middle Cambrian Shengou Formation, eastern Qilian orogen[J]. Geological Bulletin of China, 2018, 37(4): 589-603.

Zircon U-Pb dating, geochemical characteristics and tectonic setting of intermediate-basic volcanic rocks from Middle Cambrian Shengou Formation, eastern Qilian orogen

More Information
  • There are andesites intercalated with metabasalts in the Mogou area, southeastern Lajishan mélange. Their protoliths are an-desite and basalt belonging to the sub-alkaline tholeiite series. LA-ICP-MS zircon U-Pb dating of the andesite yielded an age of 503.1±6.6Ma, suggesting Middle Cambrian. ∑REE values of basalt are 93.40×10-6~135.39×10-6, (La/Yb)N=2.76~3.64, and δEu=0.87~1.00. The spider diagram of trace elements shows similar characteristics to OIB or continental rift volcanic rock, with no obviously anomaly of δEu and enrichment of incompatible elements. The andesites have lower REE content than basalt, and the negative Eu anomalies are not obvious.The spider diagram of trace elements of andesites show the enrichment of LILEs (Cs, Rb, Ba) and depletion of HFSE (Nb, Ta, Ti). The genetic analysis suggests that the basalt resulted from low degree partial melting of garnet+spinel lherzolites without obvious crustal contamination, and andesite was derived from partial melting of the crust. Tectonic environment discrimination shows that Shengou Formation was formed in a continental rift environment. These data further indicate that southeastern termination of Lajishan belt might not have had a mature system of ocean basin in the central part of Central Qilian block. With the South Qilian Ocean subdcution in the Early Paleozoic, the Shengou Formation was emplaced on the southern margin of central Qilian block as fragments of continental rift lithosphere.

  • 加载中
  • [1] 任纪舜, 主编.中国及邻区大地构造图(1:5000000)[M].北京:地质出版社, 1997.

    Google Scholar

    [2] 李春昱, 刘仰文, 朱宝清, 等. 秦岭及祁连山构造发展史. 国际交流地质学术论文集[C]//北京: 地质出版社, 1978: 174-178.

    Google Scholar

    [3] 陈隽璐, 陈有仓, 李海平, 等.祁连与北秦岭结合部位陇山岩群与秦岭岩群对比讨论[J].陕西地质, 2002, 20(2):39-49.

    Google Scholar

    [4] 冯益民, 曹宣锋, 张二朋, 等.西秦岭造山带的演化、构造格局和性质[J].西北地质, 2003, 36(1):1-10.

    Google Scholar

    [5] 许志琴, 杨经绥, 吴才来, 等.柴达木北缘超高压变质带形成与折返的时限及机制[J].地质学报, 2003, 77(2):163-176.

    Google Scholar

    [6] 肖序常, 陈国铭, 朱志直.祁连山古蛇绿岩的地质构造意义[J].地质学报, 1978, 54(4):287-295.

    Google Scholar

    [7] 李猛, 王超, 李荣社, 等.祁连山西段新元古代晚期花岗质片麻岩成因及LA-ICP-MS锆石U-Pb定年[J].地质通报, 2015, 34(8):1438-1446.

    Google Scholar

    [8] 冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996:1-266.

    Google Scholar

    [9] 夏林圻, 夏祖春, 徐学义.北祁连山海相火山岩岩石成因[M].北京:地质出版社, 1996:1-234.

    Google Scholar

    [10] 夏林圻, 夏祖春, 徐学义.北祁连山元古宙末—寒武纪主动大陆裂谷火山作用[J].地球学报, 1996, 17:282-292.

    Google Scholar

    [11] 夏林圻, 李向民, 余吉远, 等.祁连山新元古代中—晚期至早古生代火山作用与构造演化[J].中国地质, 2016, 43(4):1087-1138.

    Google Scholar

    [12] 许志琴, 徐惠芳.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学[J].地质学报, 1994, 68(1):1-15.

    Google Scholar

    [13] 宋述光.北祁连山俯冲杂岩带的构造演化[J].地球科学进展, 1997, 12:351-365.

    Google Scholar

    [14] 宋述光, 张聪, 李献华, 等.柴北缘超高压带中锡铁山榴辉岩的变质时代[J].岩石学报, 2011, 27(4):1191-1197.

    Google Scholar

    [15] Song S G, Zhang L F, Niu Y L, et al. Evolution from oceanicsubduction to continental collision:a case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data[J]. J. Petrol., 2006, 47:435-455. doi: 10.1093/petrology/egi080

    CrossRef Google Scholar

    [16] Song S G, Niu Y L, Su L, et al. Continental orogenesis fromocean subduction, continental collisionsubduction, to orogencollapse, and recycling:The example of the North Qaidam UHPM-belt, NW China[J]. Earth Sci. Rev., 2014, 129:59-84. doi: 10.1016/j.earscirev.2013.11.010

    CrossRef Google Scholar

    [17] Yang J S, Xu Z Q, Song S G, et al. Brunel, M. Discovery of coesite in the North Qaidam Early Paleozoic ultrahigh pressure (UHP) metamorphic belt, NW China[J]. C. R. Acad. Sci. Ⅱ Fascicule Sci. Terre Planets, 2001, 333:719-724.

    Google Scholar

    [18] Xia L Q, Xia Z C, Xu X Y. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China[J]. Geol. Soc. Am. Bull., 2003, 115:1510-1522. doi: 10.1130/B25269.1

    CrossRef Google Scholar

    [19] Yan Z, Aitchison J, Fu C L, et al. Hualong Complex, South Qilian terrane:U-Pb and Lu-Hf constraints on Neoproterozoic microcontinental fragments accreted to the northern Proto-Ththyan margin[J]. Precambrian Research, 2015, 266:65-85. doi: 10.1016/j.precamres.2015.05.001

    CrossRef Google Scholar

    [20] 牛广智, 黄岗, 邓昌生, 等.青海南祁连巴龙贡噶尔组变火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2016, 35(9):1441-1447.

    Google Scholar

    [21] 冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996.

    Google Scholar

    [22] 葛肖虹, 刘俊来.北祁连造山带的形成与背景[J].地学前缘, 1999, 6(4):223-230.

    Google Scholar

    [23] 张雪婷, 杨生德.青海省区域地质概论——1:100万青海省地质图说明书[M].北京:地质出版社, 2007.

    Google Scholar

    [24] 夏林圻, 夏祖春, 任有祥, 等.祁连、秦岭山系海相火山岩[M].武汉:中国地质大学出版社, 1991.

    Google Scholar

    [25] 邱家骧, 曾广策, 王思源, 等.拉脊山早古生代海相火山岩与成矿[M].武汉:中国地质大学出版社, 1996.

    Google Scholar

    [26] 杨巍然, 邓清禄, 吴秀玲.拉脊山造山带断裂作用特征及与火山岩、蛇绿岩套的关系[J].地质科技情报, 2000, 19(6):5-11.

    Google Scholar

    [27] Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilianorogen, NW China[J]. Gondwana Res., 2013, 23:1378-1401. doi: 10.1016/j.gr.2012.02.004

    CrossRef Google Scholar

    [28] 王二七, 张旗, Burchfiel C B, 青海拉脊山:一个多阶段抬升的构造窗[J].地质科学, 2000, 35(4):493-500.

    Google Scholar

    [29] 侯青叶, 张宏飞, 张本仁, 等.祁连造山带中部拉脊山谷底满特征及其归属:来自基性火山岩的地球化学证据[J].地球科学, 2005, 30(1):61-70.

    Google Scholar

    [30] 闫臻, 王宗起, 李继亮, 等.西秦岭楔的构造属性及其增生造山过程[J].岩石学报, 2012, 6:1808-1828.

    Google Scholar

    [31] 付长垒, 闫臻, 郭现轻, 等.拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄[J].岩石学报, 2014, 6:1695-1706.

    Google Scholar

    [32] Wang T, Wang Z Q, Yan Z, et al. Geochronological and Geochemical evidence of amphibolite from the Hualong Group, northwest China:Implicaton for the early Paleozoic accretionary tectonics of the Central Qilian belt[J]. Lithos, 2016, 248/251:12-21. doi: 10.1016/j.lithos.2016.01.012

    CrossRef Google Scholar

    [33] 李文渊. 祁连山岩浆作用有关硫化金属矿床成矿与找矿[D]. 西北大学博士学位论文, 2004.http://cdmd.cnki.com.cn/Article/CDMD-10697-2005151805.htm

    Google Scholar

    [34] 高永宝, 李文渊, 谢燮, 等.青海化隆地区拉水峡铜镍矿床地质、地球化学特征及成因[J].地质通报, 2012, 31(5):763-772.

    Google Scholar

    [35] 张照伟, 李文渊, 高永宝, 等.青海省拉水峡基性杂岩体地球化学特征及其对矿床成因的约束[J].地质与勘探, 2012, 48(5):959-968.

    Google Scholar

    [36] 徐旺春, 张宏飞, 柳小明.锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义[J].科学通报, 2007, 52(10):1174-1180. doi: 10.3321/j.issn:0023-074X.2007.10.014

    CrossRef Google Scholar

    [37] 何世平, 李荣社, 王超, 等.南祁连东段化隆岩群形成时代的进一步限定[J].岩石矿物学杂志. 2011, 30(1):34-44.

    Google Scholar

    [38] 余吉远, 李向民, 马中平, 等.南祁连化隆岩群LA-ICP-MS锆石U-Pb年龄及其地质意义[J].西北地质, 2012, 45(1):79-85.

    Google Scholar

    [39] 王涛, 马振慧, 王宗起, 等.中祁连拉脊山早古生代沉积岩源区和时代限定[J].地质学报, 2016, 9(90):2316-2333.

    Google Scholar

    [40] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-incluced melt-peridoite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace element in zircon from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.

    Google Scholar

    [41] Ludwig K R. Isoplot/Ex version 2.49:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication, 2001, 1a:1-56.

    Google Scholar

    [42] 李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP MS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, S1:600-601. doi: 10.3321/j.issn:1000-4734.2009.z1.311

    CrossRef Google Scholar

    [43] Wilson M. Igneous Petrogenesis:a global tectonic approach[M]. London:Unwin Hyman, 1989:1-466.

    Google Scholar

    [44] Rapp R P. Heterogeneous source regions for Archean granitoids[C]//Wit M J, Ashwal L D. Green Stone Belts. Oxford: Oxford University Press, 1997: 35-37.

    Google Scholar

    [45] Taylor S R, McClennan S. The continental crust:composition and evolution (vol.54)[M]. Boston:Blackwell Scientific Publications, 1985:209-230.

    Google Scholar

    [46] 朱弟成, 潘桂棠, 莫宣学, 等.特提斯喜马拉雅带中段东部三叠系火山岩的地球化学和岩石成因[J].岩石学报, 2006, 22(4):804-816.

    Google Scholar

    [47] Graham I J, Cole J W, Briggs R M, et al. Petroloy and petrogenesis of volcanic rocks from the Taupo Volcanic Zone:A review[J]. Journal of Vocanology and Geothermal Research, 1995, 68(1/3):59-87.

    Google Scholar

    [48] Morra V, Secchi F A G, Melluso L, et al. High-Mg subduction-related tertiary basalts in Sardinia, Italy[J]. Lithos, 1997, 40(1):69-91. doi: 10.1016/S0024-4937(96)00028-X

    CrossRef Google Scholar

    [49] Naumann T R, Geist D J. Generation of alkali basalt by crystal fractionation of tholeiitic magma[J]. Geology, 1999, 27(5):423-426. doi: 10.1130/0091-7613(1999)027<0423:GOABBC>2.3.CO;2

    CrossRef Google Scholar

    [50] Grove T L, Donnelly-Nolan J M. The evolution of young silicic lavas at Medicine Lake Volcano, California:Implications for the origin of compositional gaps in calc-alkaline series lavas[J]. Contributions to Mineralogy and Petrology, 1986, 92:281-302. doi: 10.1007/BF00572157

    CrossRef Google Scholar

    [51] Mc Donough W F. Constraints on the composition of the continental lithopheric mantle[J]. Earth Planet. Sci. Lett., 1990, 101:1-18. doi: 10.1016/0012-821X(90)90119-I

    CrossRef Google Scholar

    [52] Humphreys E R, Niu Y L. On the composition ofocean island basalts (OIB):The effects of lithospheric thicknessvariation and mantle metasomatism[J]. Lithos, 2009, 112:118-136. doi: 10.1016/j.lithos.2009.04.038

    CrossRef Google Scholar

    [53] McKenzie D P, O'Nions R K. Partial melt distributionsfrom inversion of rare earth element concentrations[J]. Journal of Petrology, 1991, 32:1021-1091. doi: 10.1093/petrology/32.5.1021

    CrossRef Google Scholar

    [54] Grove T L, Donnelly-Nolan J M. The evolution of young silicic lavas at Medicine Lake Volcano, California:Implications for the origin of compositional gaps in calc-alkaline series lavas[J]. Contributions to Mineralogy and Petrology, 1986, 92:281-302. doi: 10.1007/BF00572157

    CrossRef Google Scholar

    [55] Macdonald R, Sparks R S J, Sigurdsson H, et al. The 1875 eruption of Askjavocano, Iceland:Combined fractional crystallization and selective contamination in the generation of rhyolitic magma[J]. Mineralogical Magazine, 1987, 51:183-202. doi: 10.1180/minmag

    CrossRef Google Scholar

    [56] Brouxel M, Lapoerre H, Michard A, et al. The deep layers of a Paleozoic arc:Geochemistry of the Copley-Blaklala series, northern California[J]. Earth and Planetary Science Letters, 1987, 85:386-400. doi: 10.1016/0012-821X(87)90135-X

    CrossRef Google Scholar

    [57] Holmes A. The problem of the association of acid and basic rocks in central complexes[J]. Geological Magazine, 1931, 68:241-255. doi: 10.1017/S0016756800087197

    CrossRef Google Scholar

    [58] Sigurdsson H. Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer[J]. Nature, 1997, 269:26-28.

    Google Scholar

    [59] 邓清禄, 周雁, 杨巍然.拉脊山早古生代火山岩盆地开合演化岩石地球化学标志[J].西北地质科学, 1995, 16(1):84-91.

    Google Scholar

    [60] 邱家骧, 曾广策, 朱云海, 等.北秦岭-南祁连早古生代裂谷造山带火山岩与小洋盆蛇绿岩套特征及纬向对比[J].高校地质学报, 1998, 4(4):393-405.

    Google Scholar

    [61] 吴才来, 杨经绥, Ireland T, 等.祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义[J].岩石学报, 2001, 17(2):215-221.

    Google Scholar

    [62] 袁桂邦, 王懋功, 李惠民, 等.柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义[J].前寒武纪研究进展, 2002, 25(1):36-40.

    Google Scholar

    [63] Zhang J X, Yang J S, Mattinson C G, et al. Two constrastingeclogite cooling histories, North Qaidam HP/UHP terrane, western China:Petrological and isotopic constraints[J]. Lithos, 2005, 84:51-76. doi: 10.1016/j.lithos.2005.02.002

    CrossRef Google Scholar

    [64] Zhang J X, Meng F C, Wan Y S. A cold Early Paleozoic subduction zone in the North Qilian Mountains, NW China:petrological and U-Pb geochronological constraints[J]. Metamor. Geol., 2007, 25:285-304. doi: 10.1111/jmg.2007.25.issue-3

    CrossRef Google Scholar

    [65] Zhang J X, Mattinson C G, Yu S Y, et al. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China:spatially and temporally extensive UHP metamorphism during continental subduction[J]. Metamorph. Geol., 2010, 28:955-978. doi: 10.1111/jmg.2010.28.issue-9

    CrossRef Google Scholar

    [66] Mattinson C G, Wooden J L, Liou J G, et al. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China[J]. American J. Sci., 2006, 306:683-711. doi: 10.2475/09.2006.01

    CrossRef Google Scholar

    [67] 陈丹玲, 孙勇, 刘良, 等.柴北缘野马滩超高压地体的成因——年代学研究结果的约束[J].西北大学学报(自然科学版), 2009, 39(4):631-638.

    Google Scholar

    [68] Song S G, Zhang L F, Niu Y L, et al. Geochronology of diamondbearing zircons from garnet- peridotite in the North Qaidam UHPM belt, North Tibetan Plateau:a record of complex histories associated with continental collision[J]. Earth. Planet. Sci. Lett., 2005, 234:99-118. doi: 10.1016/j.epsl.2005.02.036

    CrossRef Google Scholar

    [69] 许志琴, 杨经绥, 吴才来, 等.柴达木北缘超高压变质带形成与折返的时限及机制[J].地质学报, 2003, 77(2):163-176.

    Google Scholar

    [70] 樊光明, 雷东宁.祁连山东南段加里东造山期构造变形年代的精确限定及其意义[J].科学通报, 2007, 32(1):39-44.

    Google Scholar

    张克信, 朱云海. 1: 25万临夏市幅区域地质调查报告. 中国地质大学(武汉), 2006.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(1388) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint