2019 Vol. 38, No. 12
Article Contents

ZHANG Qi, GE Can, JIAO Shoutao, YUAN Feng, ZHANG Mingming, LIU Huiyun. The deficiencies and possible solutions of TAS classification in the context of big data[J]. Geological Bulletin of China, 2019, 38(12): 1943-1954.
Citation: ZHANG Qi, GE Can, JIAO Shoutao, YUAN Feng, ZHANG Mingming, LIU Huiyun. The deficiencies and possible solutions of TAS classification in the context of big data[J]. Geological Bulletin of China, 2019, 38(12): 1943-1954.

The deficiencies and possible solutions of TAS classification in the context of big data

  • The TAS diagram, which is widely used in academia, is a classification scheme for volcanic rocks approved by IUGS in 1989. This classification has been active in advancing the research on petrology and geochemistry, regulating the naming of rocks (especially volcanic rocks) and facilitating the exchange of academia. However, it cannot be denied that earlier studies had some limitations due to analytical methods, analytical techniques and data volume limitations. Now that the world has accumulated a huge amount of data, researchers should have the conditions for making new discussion on the classification of volcanic rocks. In this study, the authors have developed a new TAS classification scheme for volcanic rocks using a probability density function. The original TAS diagram defines 15 root names, among which 9 are preserved in this paper. With the addition of one new root name, the authors define a total of 10 root names. The biggest change in the new TAS diagram is in the alkaline rock series. In the new TAS diagram, the trachybasalt series is closed up, thus making up for the earlier TAS classification in the acidic rock part of the deficiency. The authors have also found that the TAS diagram may have some problems. The classification scheme presented in this study is subject to further discussions and tests.

  • 加载中
  • [1] Iddings J P. Origin of Igneous Rocks[M]. Bull. Phil. Soc. Washington, 1892, 12: 89-213.

    Google Scholar

    [2] Chayes F. Alkaline and subalkaline basalts[J]. Am. Jour. Sci., 1966, 264:128-145. doi: 10.2475/ajs.264.2.128

    CrossRef Google Scholar

    [3] Streckeisen A, Le Maitre R W. A chemical approximation to the modal QAPF classification of the igneous rocks[J]. N. Jb. Miner. Abh., 1979, 136:169-206.

    Google Scholar

    [4] Fitton J G. Upton B G J. Alkaline Igneous Rocks[M]. Geol. Soc. Spec. Publ., 1987.

    Google Scholar

    [5] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Can. J. Earth Sci., 1971, 8, 523-48. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [6] Le Maitre R W. Some problems of the projection of chemical data into mineralogical classifications[J]. Contr. Miner. Petrol., 1976, 56:181-9. doi: 10.1007/BF00399603

    CrossRef Google Scholar

    [7] Le Martre R W, Bateman P, Dudek A. A Classification of Igneous Rocka and Glossary of Terms[M]. Oxford:Blackwell, 1989.

    Google Scholar

    [8] Kuno H. High-alumina basalt[J]. J. Petrol., 1960, 1:121-145. doi: 10.1093/petrology/1.2.121

    CrossRef Google Scholar

    [9] Kuno H. Lateral variation of basalt magma types across continental margins and island arcs[J]. Bull. Volcanol, 1966, 29:195-222. doi: 10.1007/BF02597153

    CrossRef Google Scholar

    [10] Le bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. J. Petrol., 1986, 27:745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    [11] Middlemost E A K. A contribution to the nomenclature and classification of volcanic rocks[J]. Geol. Mag., 1980, 117:51-7. doi: 10.1017/S0016756800033094

    CrossRef Google Scholar

    [12] Murray J W. A Guide to Classification in Geology[M]. Chichester Ellis Horwood Ltd, 1981.

    Google Scholar

    [13] Rollison H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Longman Scientific and Technical, New York, 1993.

    Google Scholar

    [14] 王碧香.国际火成岩分类命名研究现状[J].地质科技情报, 1990, (4):30-31.

    Google Scholar

    [15] Cox K G, Bell J D, Pankhurst R J. The Interpretation of Igneous Rocks[M]. London:George Allen & Unwin, 1979.

    Google Scholar

    [16] Carmichael I S E, Turner F J, Verhoogen J V. Igneous Petrology[M]. Department of Geology and Geophysics, Berkeley:University of California, 1982.

    Google Scholar

    [17] 邓晋福, 刘翠, 冯艳芳, 等.关于火成岩常用图解的正确使用:讨论与建议[J].地质论评, 2015, 61(4):717-734.

    Google Scholar

    [18] 都城秋穗, 久城育夫.岩石学[M].北京:科学出版社, 1984:1-344.

    Google Scholar

    [19] Wilson M. Igneous Petrogenesis[M]. London:Unwin Hyman. 1989.

    Google Scholar

    [20] Le Maitre R W. A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram[J]. Australian J. Earth Sci., 1984, 31:243-255. doi: 10.1080/08120098408729295

    CrossRef Google Scholar

    [21] MacDonald G A, Katsura T. Chemical compositions of Hawaiian lavas[J]. J. Petrol., 1964, 5:83-133.

    Google Scholar

    [22] MacDonald G A. Composition and origin of Hawaiian lavas[C]//Coats R R, Hay R L, Anderson C A. Studies in volcanology: a memoir in honour of Howel Willims. Geol. Soc. Am. Mem., 1968, 116: 477-522.

    Google Scholar

    [23] 张旗, 周永章.大数据正在引发地球科学领域一场深刻的革命——《地质科学》 2017年大数据专题代序[J].地质科学, 2017, 52(3):637-648.

    Google Scholar

    [24] Trigor W E. Speiziclle Petrographic der Eruptivgesteine[M]. Berlin, 1935.

    Google Scholar

    [25] Rittmann A. Stable Mineral Assemblages of Igneous Rocks[M]. Heidelberg:Springer-Verlag, 1973.

    Google Scholar

    [26] Streckeisen A. To each plutonic rock its proper name[J]. Earth-Sci. Rev., 1976, 12:1-33. doi: 10.1016/0012-8252(76)90052-0

    CrossRef Google Scholar

    [27] Hatch F H, Wells A K, Wells M K. The Petrology of the Igneous Rocks[M]. Thomas Murby, London, 1972.

    Google Scholar

    [28] De La Roche H, Leterrier P, Grandclaude P, et al. A classification of volcanic and plutonic rocks using the R1-R2 diagram and major element analyses. Its relationships with current nomenclature[J]. Chem. Geol., 1980, 29:183-210. doi: 10.1016/0009-2541(80)90020-0

    CrossRef Google Scholar

    [29] Zancttin B. Proposed new chemical classification of volcanic rocks[J]. Episodes, 1984, 7:19-20. doi: 10.18814/epiiugs/1984/v7i4/003

    CrossRef Google Scholar

    [30] Streckeisen A. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatiets, and melilitic roeks, recommendations and suggestions of the IUGS commission on the systmeaties of igneous roeks[J]. Geology (Boulder), 1979, 7:331-335. doi: 10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2

    CrossRef Google Scholar

    [31] Frolova T I, Petrova M A. The classification diagram of effusive rocks[C]//IUGS Subcommission, 18th circular, Contrib., 1974, 39: 25-30.

    Google Scholar

    [32] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 1976, 58:63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [33] 邓晋福.火成岩系列划分的回顾与当代含义[J].岩石矿物学杂志, 1991, 10(1):37-42.

    Google Scholar

    [34] 葛粲, 顾海欧, 汪方跃, 等.基于数据密度确定分布区域的方法:以TAS图解分析为例[J].地质科学, 2018, 53(4):1240-1253.

    Google Scholar

    [35] 张旗, 李达周, 张魁武.横断山区镁铁-超镁铁岩[M].北京:科学出版社, 1992.

    Google Scholar

    [36] 张旗, 王焰, 熊小林, 等.埃达克岩和花岗岩:挑战与机遇[M].北京:中国大地出版社, 2008.

    Google Scholar

    [37] Streckeisen A. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks[J]. N. Jb. Miner. Abh., 1978, 134:1-14.

    Google Scholar

    [38] 王金荣, 陈万峰, 张旗. MORB数据挖掘:玄武岩判别图反思[J].大地构造与成矿学, 2017, 41(2):420-431.

    Google Scholar

    [39] Carmichael I S E, Turner F J, Verhoogen J. Igneous Petrology[M]. New York:McGraw-HiU, 1974.

    Google Scholar

    [40] Jiao S T, Zhang Q, Ge C et al. Distribution of Picrite Basalt on TAS and the Boundary between Basic and Ultrabasic Rocks: Research and Discovery of Global Volcanic Rock Data (in press).

    Google Scholar

    [41] Yoder H S Jr, Tilley C E. Origin of basalt magmas:an experiment study of natural and synthetic rock systems[J]. J. Petrol., 1962, 3:342-532. doi: 10.1093/petrology/3.3.342

    CrossRef Google Scholar

    [42] 查瓦里茨基A H.火成岩[M].北京:地质出版社, 1958.

    Google Scholar

    [43] 曾广策, 邱家骧.碱性岩的概念及其分类命名综述[J].地质科技情报, 1996, 15(1):31-37.

    Google Scholar

    [44] 赵振华.富碱侵入岩——窥探地幔成分的窗口[C]//欧阳自远.中国矿物岩石地球化学研究进展.兰州: 兰州大学出版社, 1994: 113-114.

    Google Scholar

    [45] 黄文龙.滇东南个旧白云山碱性岩年代学和地球化学及成因意义[J].岩石矿物学杂志, 2018, 37(5):716-732. doi: 10.3969/j.issn.1000-6524.2018.05.002

    CrossRef Google Scholar

    [46] 吴利仁, 刘若新, 梅厚钧, 等.云南某地基性岩岩石学上的一些问题[J].地质科学, 1959, 2(11):354-364.

    Google Scholar

    [47] Harker A. The natural history of igneous rocks:I. Their geographical and chronological distribution[J]. Science Progress (1894-1898), 1896, 6:12-33.

    Google Scholar

    [48] 邓晋福, 肖庆辉, 苏尚国, 等.火成岩组合与构造环境:讨论[J].高校地质学报, 2007, 13(3):392-402. doi: 10.3969/j.issn.1006-7493.2007.03.009

    CrossRef Google Scholar

    [49] 葛粲, 张旗, 李修钰, 孙贺, 等.一维到三维密度分布函数及其可视化在大数据分析中的应用——以苦橄质玄武岩等为例[J].地质通报, 2019, 38(12):2043-2052.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(2872) PDF downloads(14) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint