Citation: | ZHANG Yaguang, CHEN Jianping, JIA Zhijie, LI Shi, LIU Suqing, ZHANG Zhiping, ZHANG Ye. Construction and prediction of a prospecting model based on recurrent neural network[J]. Geological Bulletin of China, 2019, 38(12): 2033-2042. |
Under the background of big data and artificial intelligence and on the basis of the establishment and application basis of existing traditional geological prospecting model, this paper proposes a prospecting model construction and prediction method based on cyclic neural network, with the purpose of achieving in-depth analysis and understanding of geological data. According to the requirements for construction and prediction of geological prospecting model, the authors combined the data cleaning theory to systematically summarize and summarize the traditional geological prospecting model, thus establishing a geological prospecting knowledge base and providing training data for deep learning algorithms. The accuracy of the comparison results and the time used for classification were comprehensively analyzed. Finally, the RNN classification algorithm was selected to classify the conceptual model of prospecting. In the process of establishing the prospecting model of the study area, by using the key words and ore control elements to complete the model matching, the model was used to analyze the model matching results so as to realize the construction of the regional geological prospecting model and the prediction and analysis of the mineral resources. With the Dashui gold deposit as an example, the construction of the prospecting model was realized quickly and accurately, which effectively provides guidance for the prediction of mineral resources and verifies the feasibility of the method.
[1] | 肖克炎, 孙莉, 李楠, 等.大数据思维下的矿产资源评价[J].地质通报, 2015, 34(7):1266-1272. doi: 10.3969/j.issn.1671-2552.2015.07.003 |
[2] | 赵鹏大, 张寿庭, 陈建平.危机矿山可接替资源预测评价若干问题探讨[J].成都理工大学学报(自然科学版), 2004, 31(2):111-117. doi: 10.3969/j.issn.1671-9727.2004.02.001 |
[3] | 郑啸, 李景朝, 王翔, 等.大数据背景下的国家地质信息服务系统建设[J].地质通报, 2015, 34(7):1316-1322. doi: 10.3969/j.issn.1671-2552.2015.07.009 |
[4] | 赵鹏大.大数据时代数字找矿与定量评价[J].地质通报, 2015, 34(7):1255-1259. doi: 10.3969/j.issn.1671-2552.2015.07.001 |
[5] | 周顺平, 徐枫.大数据环境下地理信息产业发展的几点思考[J].地理信息世界, 2014, 21(1):45-50. doi: 10.3969/j.issn.1672-1586.2014.01.027 |
[6] |
朱月霞.基于大数据的地质数据存储与管理研究[C]//江苏省测绘地理信息学会.江苏省测绘地理信息学会2014年学术年会论文集, 2014: 3. |
[7] | 严光生, 薛群威, 肖克炎, 等.地质调查大数据研究的主要问题分析[J].地质通报, 2015, 34(7):1273-1279. doi: 10.3969/j.issn.1671-2552.2015.07.004 |
[8] | 黄宜华.大数据机器学习系统研究进展[J].大数据, 2015, 1(1):35-54. |
[9] | 张震, 王文发.人工智能原理在人类学习中的应用[J].吉首大学学报(自然科学版), 2006, (1):39-42. doi: 10.3969/j.issn.1007-2985.2006.01.009 |
[10] | 张丽芳.浅谈机器学习的现状及策略[J].现代经济信息, 2009, (6):155, 157. |
[11] | 陈建平, 陈勇, 朱鹏飞, 等.数字矿床模型及其应用——以新疆阿勒泰地区可可托海3号伟晶岩脉稀有金属隐伏矿预测为例[J].地质通报, 2011, 30(5):630-641. doi: 10.3969/j.issn.1671-2552.2011.05.002 |
[12] | 于萍萍, 陈建平, 柴福山, 等.基于地质大数据理念的模型驱动矿产资源定量预测[J].地质通报, 2015, 34(7):1333-1343. doi: 10.3969/j.issn.1671-2552.2015.07.011 |
[13] | 弓小平, 王世称, 杨兴科, 等.地质矿产预测信息化相关问题的探讨[J].地质找矿论丛, 2005, (1):66-70. doi: 10.3969/j.issn.1001-1412.2005.01.013 |
[14] | Anderson T W. An Introduction to Multivariate Statisical Analysis[M]. New York:John Wiley & Sons, 2003. |
[15] | Wu X, Kumar V, Ross-Quinlan J, et al. TOP 10 algorithms in data mining[J]. Knowl. Inf. Syst., 2007, 14:1-37. |
[16] | 翟裕生, 邓军, 李晓波.区域成矿学[M].北京:地质出版社, 1999. |
[17] | 涂光炽.超大型矿床的找寻和理论研究[J].矿产与地质, 1989, (1):1-8. |
[18] | 朱裕生, 梅燕雄.成矿模式研究的几个问题[J].地球学报, 1995, (2):182-189. |
[19] | 程裕淇, 陈毓川, 毛景文, 等.初论矿床的成矿系列问题[J].中国地质科学院院报, 1979, (1):1-7. |
[20] | 李玉斌, 吴静哲, 陈小格.基于关键词聚类的深度学习研究[J].软件导刊, 2019, 18(3):199-203. |
[21] | 吴永亮, 贾志杰, 陈建平, 等.基于大数据智能的找矿模型构建与预测[J].中国矿业, 2017, 26(9):79-84. |
[22] | Li S, Chen J P, Xiang J. Prospecting Information Extraction by Text Mining Based on Convolutional Neural Networks A case study of the Lala Copper Deposit, China[J]. IEEE Access, 2018, 6:52286-52297. doi: 10.1109/ACCESS.2018.2870203 |
[23] |
龚千健.基于循环神经网络模型的文本分类[D].华中科技大学硕士学位论文, 2016. |
[24] |
尹汉钊.基于递归神经网络与集成算法的时间序列预测应用研究[D].西安电子科技大学硕士学位论文, 2010. |
[25] |
林蕾.基于循环神经网络模型的遥感影像时间序列分类及变化检测方法研究[D].中国科学院大学(中国科学院遥感与数字地球研究所)博士学位论文, 2018. |
[26] |
Alom M Z, Hasan M, Yakopcic C, et al. Inception Recurrent Convolutional Neural Network for Object Recognition[J]. arXiv: 1704.07709, 2017: 1-11. |
[27] | 刘腾飞, 于双元, 张洪涛, 等.基于循环和卷积神经网络的文本分类研究[J].软件, 2018, 39(1):64-69. doi: 10.3969/j.issn.1003-6970.2018.01.013 |
[28] | Nallapati R, Zhai F, Zhou B. SummaRuNNer:A Recurrent Neural Network based Sequence Model for Extractive Summarization of Documents[J]. AAAI, 2017, 1:1. |
[29] | 刘婷婷, 朱文东, 刘广一.基于深度学习的文本分类研究进展[J].电力信息与通信技术, 2018, 16(3):1-7. |
[30] |
Qin Y, Song D J, Chen H F, et al. A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction[J]. arXiv: 1704.02971, 2017: 1-7. |
Construction and prediction of prospecting model based on in-depth learning
Correspondence relations in conceptual model database of prospecting
Comparison of accuracies of classification results
Time comparison for classification
Calculating chart of training loss of recurrent neural network
Recurrent neural network on time expansion
Summary diagram of recurrent neural network
Selection of ore-controlling factors in the study area