2019 Vol. 38, No. 11
Article Contents

ZHUANG Yujun, GU Pingyang, LI Peiqing, HE Shiping, CHEN Ruiming, ZHA Xianfeng. Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northwestern margin of Oulongbuluke micro-block on the northern margin of Qaidam Basin[J]. Geological Bulletin of China, 2019, 38(11): 1801-1812.
Citation: ZHUANG Yujun, GU Pingyang, LI Peiqing, HE Shiping, CHEN Ruiming, ZHA Xianfeng. Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northwestern margin of Oulongbuluke micro-block on the northern margin of Qaidam Basin[J]. Geological Bulletin of China, 2019, 38(11): 1801-1812.

Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northwestern margin of Oulongbuluke micro-block on the northern margin of Qaidam Basin

More Information
  • Metagabbro dykes were emplaced in the Dakendaban Rock Group on the northwestern margin of the Oulongbuluke Block, northern margin of Qaidam. They are characterized by higher Al2O3, CaO but lower P2O5, TiO2, belonging to subalkalic calcalkaline series. Meanwhile, the rocks have lower Σ REE and LREE/HREE ratios between 1.82~2.77, with the chondritenormalized REE showing right-inclined patterns. The rocks are characterized by low Ti and Nb/La(0.44~0.84), but high ThN/NbN (3.75~8.03). The εHf(t)values vary in the range of 9.25~15.11, 176Hf/177Hf ratios vary from 0.282813 to 0.282979, and Hf model ages vary from 378Ma to 610Ma. Comprehensive researches show that the magma of metagabbro dykes was derived from asthenosphere mantle, and was probably contaminated by the crust. LA-ICP-MS zircon U-Pb dating of metagabbro dykes in the Dakendaban Rock Group yielded the formation age of 357±4Ma. Combined with regional geological background, the authors hold that the northwestern margin of the Qaidam Basin was still in the extensional tectonic stage in Early Carboniferous, and the rocks were formed under the condition of unrooting of the north of Qaidam orogenic belt and the upwelling of asthenospheric mantle.

  • 加载中
  • [1] Wang H Z, Mo X X. An outline of the tectonic evolution of China[J]. Episodes, 1995, 18(12):6-16.

    Google Scholar

    [2] 王惠初, 陆松年, 莫宣学, 等.柴达木盆地北缘早古生代碰撞造山系统[J].地质通报, 2005, 24(7):603-612. doi: 10.3969/j.issn.1671-2552.2005.07.003

    CrossRef Google Scholar

    [3] 郭安林, 张国伟, 强娟, 等.青藏高原东北缘印支期宗务隆造山带[J].岩石学报, 2009, 25(1):1-12.

    Google Scholar

    [4] 陆松年, 王惠初, 李怀坤, 等.柴达木盆地北缘"达肯大坂群"的再厘定[J].地质通报, 2002, 21(1):19-23. doi: 10.3969/j.issn.1671-2552.2002.01.004

    CrossRef Google Scholar

    [5] 朱小辉, 陈丹玲, 刘良, 等.柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义[J].岩石学报, 2014, 30(3):822-834.

    Google Scholar

    [6] 宋述光, 牛耀龄, 张立飞, 等.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例[J].岩石学报, 2009, 25(9):2067-2077.

    Google Scholar

    [7] Zhang G B, Song S G, Zhang L F, et al. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China:Evidence from petrology, geochemistry and geochronology[J]. Lithos, 2008, 104:99-118. doi: 10.1016/j.lithos.2007.12.001

    CrossRef Google Scholar

    [8] Zhang G B, Zhang L F, Christy A G. From oceanic subduction to continental collision:An overview of HP-UHP metamorphic rocks in the North Qaidam UHP belt, NW China[J]. J. Asian Earth Sci., 2013, 63:98-111. doi: 10.1016/j.jseaes.2012.07.014

    CrossRef Google Scholar

    [9] 宋述光, 张贵宾, 张聪, 等.大洋俯冲和大陆碰撞的动力学过程:北祁连-柴北缘高压-超高压变质带的岩石学制约[J].科学通报, 2013, 58(23):2240-2245.

    Google Scholar

    [10] 郝国杰, 陆松年, 王惠初, 等.柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化[J].地学前缘, 2004, 11(3):115-122. doi: 10.3321/j.issn:1005-2321.2004.03.013

    CrossRef Google Scholar

    [11] 史仁灯, 杨经绥, 吴才来.柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J].岩石矿物学杂志2003, (3):229-236. doi: 10.3969/j.issn.1000-6524.2003.03.004

    CrossRef Google Scholar

    [12] 吴才来, 郜源红, 吴锁平, 等.柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J].中国科学(D辑), 2008, 38(8):930-949. doi: 10.3321/j.issn:1006-9267.2008.08.002

    CrossRef Google Scholar

    [13] 高晓峰, 校培喜, 贾群子.滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J].地质学报, 2011, 85(9):1452-1463.

    Google Scholar

    [14] 吴才来, 杨经绥, 许志琴, 等.柴达木盆地北缘古生代超高压带中花岗质岩浆作用[J].地质学报, 2004, (5):658-674. doi: 10.3321/j.issn:0001-5717.2004.05.010

    CrossRef Google Scholar

    [15] Wu C L, Wooden J L, Robinson P T, et al. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam[J].Science in China D:Earth Sciences, 2009, 38(8):930-949.

    Google Scholar

    [16] 吴才来, 郜源红, 李兆丽, 等.都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架[J].中国科学:地球科学, 2014, 44(10):2142-2165.

    Google Scholar

    [17] Song S G, Su L, Li X H, et al. Tracing the 850Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China[J]. Precambrian Research, 2010, 183, 805-816. doi: 10.1016/j.precamres.2010.09.008

    CrossRef Google Scholar

    [18] Zhang C, Zhang L, Herman V R, et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42, 752-767. doi: 10.1016/j.jseaes.2011.04.002

    CrossRef Google Scholar

    [19] Zhang J X, Mattinson C G, Yu S Y, et al. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China:spatially and temporally extensive UHP metamorphism during continental subduction[J]. Journal of metamorphic Geology, 2010, 28, 955-978. doi: 10.1111/j.1525-1314.2010.00901.x

    CrossRef Google Scholar

    [20] Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 2014, 129:59-84. doi: 10.1016/j.earscirev.2013.11.010

    CrossRef Google Scholar

    [21] 彭渊, 马寅生, 刘成林, 等.东昆仑大干沟火山岩SHRIMP锆石U-Pb测年及其地质意义[J].地质通报, 2016, 35(213):356-363.

    Google Scholar

    [22] Walker G P L, Eyre P R. Dike compleses in American Samoa[J]. J. Volc. Geother. Res., 1995, 69:241-254. doi: 10.1016/0377-0273(95)00041-0

    CrossRef Google Scholar

    [23] Windley B F. The evolving continents(3rd ed)[M]. New York:John Wiley, 1995:1-526.

    Google Scholar

    [24] Ernst R E, Buchan K L, Hamilton M A, et al. Integrated paleomagnetism and U-Pb geochronology of mafic dikes of the eastern Anabar Shield Region, Siberia:Implications for Mesoproterozoic Paleolatitude of siberia and Comparison with Laurentia[J]. The Journal of Geology, 2000, 108:381. doi: 10.1086/314413

    CrossRef Google Scholar

    [25] 邵济安, 张永北, 张履桥, 等.大同地区早古生代煌斑岩-碳酸岩岩墙群[J].岩石学报, 2003, 19(1):93-104.

    Google Scholar

    [26] 杨经绥, 宋述光, 许志琴, 等.柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物——柯石英[J].地质学报, 2001, 2:175-179.

    Google Scholar

    [27] 查显锋, 辜平阳, 计文化, 等.欧龙布鲁克地块西段达肯大坂岩群物质组成及变形特征研究[J].地质科学, 2013, 4:1103-1114. doi: 10.3969/j.issn.0563-5020.2013.04.010

    CrossRef Google Scholar

    [28] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [29] Ludwig K R. 3.0-A geochronologycal toolkit for Microsoft Excel[J]. Berkeley Geochronology Certer, Special Publication, 2003(, 4):1-70.

    Google Scholar

    [30] Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(12):1567-1574.

    Google Scholar

    [31] Albarède F, Scherer E E, Blichert-Toft J, et al. γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant[J]. Geochimica et Cosmochimica Acta, 2006, 70(5):1261-1270. doi: 10.1016/j.gca.2005.09.027

    CrossRef Google Scholar

    [32] Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 2008, 273(12):48-57. doi: 10.1016/j.epsl.2008.06.010

    CrossRef Google Scholar

    [33] Nowell G, Kempton P, Noble S, et al. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry:insights into the depleted mantle[J]. Chemical Geology, 1998, 149(3):211-233. doi: 10.1016/S0009-2541(98)00036-9

    CrossRef Google Scholar

    [34] 李文宣, 吴新国, 冯家麟.大同火山群玄武岩研究[J].河北地质学院学报, 1994, 6:547-555.

    Google Scholar

    [35] 韩吟文, 马振东.地球化学[M].北京:地质出版社, 2003.

    Google Scholar

    [36] 王立社, 李智明, 仇银江, 等.阿尔金奇克山东斜长角闪岩地球化学、年代学及其成因意义[J].地质学报, 2016, 4:739-751. doi: 10.3969/j.issn.0001-5717.2016.04.010

    CrossRef Google Scholar

    [37] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process[C]//Sauders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42: 3l3-345.

    Google Scholar

    [38] Hajash A J. Rare earth element abundances and distribution patterns in hydrothermally altered basalts:Experimental results[J]. Contributions to Mineralogy and petrology, 1984, 85(4):409-412. doi: 10.1007/BF01150297

    CrossRef Google Scholar

    [39] Becker H, Jochum K P, Carlson R W. Constraints from highpressure veins in eclogites on the composition of hydrous fluids in subduction zones[J]. Chemical Geology, 1999, 160(4):291-308. doi: 10.1016/S0009-2541(99)00104-7

    CrossRef Google Scholar

    [40] Escuder-Viruete J, Pérez-Estaún A, Weis D, et al. Geochemical characteristics of the Río Verde complex, central Hispaniola:Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc[J]. Lithos, 2010, 114(12):168-185. doi: 10.1016/j.lithos.2009.08.007

    CrossRef Google Scholar

    [41] Ormerod D S, Hawkesworth C J, Rogers N W, et al. Tectonic and magmatic transition in the western Great Basin, USA[J]. Nature, 1988, 333(61716172):394-353.

    Google Scholar

    [42] Saunders A D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interactions[J]. Geological Society, London, Special Publications, 1992, 68(1):41-60. doi: 10.1144/GSL.SP.1992.068.01.04

    CrossRef Google Scholar

    [43] Bienvenu P, Bougault H, Joron J, et al. MORB alteration:Rare earth element/non-rare-earth hugromagmaphile element fractionation[J]. Chemical Geology, 1990, 82:1-14. doi: 10.1016/0009-2541(90)90070-N

    CrossRef Google Scholar

    [44] Rudnick R L, Gao S. Composition of the continental crust[C]//Turekian K K, Holland H D. Treatise on Geochemistry. Oxford: Pergamon, 2003: 1-64.

    Google Scholar

    [45] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 32(2):185-220.

    Google Scholar

    [46] 第五春荣, 孙勇, 王倩.华北克拉通地壳生长和演化, 来自现代河流碎屑锆石Hf同位素组成的启示[J].岩石学报, 2012, 28(11):3520-3530.

    Google Scholar

    [47] 王冬兵, 王立全, 尹福光, 等.滇西北金沙江古特提斯洋早期演化时限及其性质:竹林层状辉长岩锆石U-Pb年龄及Hf同位素约束[J].岩石学报, 2012, 28(5):1542-1550.

    Google Scholar

    [48] 夏林圻, 夏祖春, 徐学义, 等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 2007, (1):77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011

    CrossRef Google Scholar

    [49] Song S G, Su L, Li X H, et al. Grenville-age orogenesis in the Qaidam-Qilian block:The link between South China and Tarim[J]. Precambrian Research, 2012, 220:9-22. doi: 10.1016/j.precamres.2012.07.007

    CrossRef Google Scholar

    [50] 周宾, 郑有业, 许荣科, 等.青海柴达木山岩体LA-ICP-MS锆石U-Pb定年及Hf同位素特征[J].地质通报, 2013, 32(7):1027-1034. doi: 10.3969/j.issn.1671-2552.2013.07.008

    CrossRef Google Scholar

    [51] 吴才来, 郜源红, 吴锁平, 等.柴北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J].岩石学报, 2007, 23(8):1861-1875. doi: 10.3969/j.issn.1000-0569.2007.08.008

    CrossRef Google Scholar

    [52] Wang M J, Song S G, Niu Y L, et al. Post-collisional magmatism:Consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China[J]. Lithos, 2014, 210211:81-198. doi: 10.1016/j.lithos.2014.10.006

    CrossRef Google Scholar

    [53] 李睿华, 孙丰月, 李良, 等.青海牛鼻子梁镍矿勘查区闪长岩UPb年代学、地球化学及Hf同位素研究[J].地质学报, 2017, 91(10):2273-2284. doi: 10.3969/j.issn.0001-5717.2017.10.009

    CrossRef Google Scholar

    [54] 许志琴, 杨经绥, 李海兵, 等.造山的高原——青藏高原地体的拼合、碰撞造山及隆升机制[M].北京:地质出版社, 2007:1-458.

    Google Scholar

    [55] 张贵山, 温汉捷, 裘愉卓.闽西晚中生代基性岩脉的地球化学研究[J].地球化学, 2004, (3):243-253. doi: 10.3321/j.issn:0379-1726.2004.03.003

    CrossRef Google Scholar

    辜平阳,董增产,陈锐明,等.青海阿尔金1:5万打柴沟(J46E005011、J46E005012、J46E005013、J46E006011、J46E006012、J46E006013)等6幅区调.2016.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(1382) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint