Citation: | WANG Hong, ZHANG Jinrang, ZHOU Qing, SUN Zhiming, WANG Yiwei, CHEN Gang. Zircon U-Pb age and geochemistry of the Guangmashan monzonitic porphyry in Ninglang, Yunnan Province[J]. Geological Bulletin of China, 2019, 38(11): 1858-1866. |
The Guangmashan monzonitic porphyry in Ninglang is located between Xiaojinhe and Binchuan-Chenhai faults in western Yangtze block. In this paper, the authors carried out LA-ICP-MS zircon U-Pb dating for the monzonite porphyry and obtained a weighted mean age of 33.37±0.26Ma, suggesting Oligocene, which is consistent with the main formation age of Lijiang-Beiya alkali-rich porphyritic belt. The monzonite porphyry shows peraluminous alkaline affinities, with SiO2 content of 61.55%~69.13%, (Na2O+K2O) content of 8.85%~10.92%, N/K ratio of 0.88~1.07, A/NK ratio of 1.54~1.84, and A/CNK ratio of 1.23~1.72. It is also enriched in LREE but depleted in HREE, with high ratio La/Yb, low Y and Yb content, and low values of Mg#(< 0.5). The porphyry shows continent-type potassium C-type adakite characteristics, and might have been derived by partial melting of the thickened lower crust caused by Jinshajiang-Red River strike-slip fault system, formed in an extensional setting at post-collisional stage, caused by the collision between the India and Eurasian blocks.
[1] | 侯增谦, 钟大赉, 邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质, 2004, 31(1):1-13. |
[2] | 侯增谦, 潘桂堂, 王安建, 等.青藏高原碰撞造山带:晚碰撞转换成矿作用[J].矿床地质, 2006, 25(5):521-543. doi: 10.3969/j.issn.0258-7106.2006.05.001 |
[3] | 莫宣学.青藏高原新生代碰撞-后碰撞火成岩[M].北京:地质出版社, 2009:1-396. |
[4] | Liang H Y, Campbell I H, Allen C, et al. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore bearing porphyries in eastern Tibet[J]. Mineralium Deposita, 2006, 41(2):152-159. doi: 10.1007/s00126-005-0047-1 |
[5] | 姜耀辉, 蒋少涌, 凌宏飞, 等.陆-陆碰撞造山环境下的含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例[J].岩石学报, 2006, 22(4):697-706. |
[6] | 徐受民, 莫宣学, 曾普胜, 等.滇西北衙富碱斑岩的特征及成因[J].现代地质, 2006, 20(4):527-535. doi: 10.3969/j.issn.1000-8527.2006.04.002 |
[7] | 肖晓牛, 喻学惠, 莫宣学, 等.滇西洱海北部北衙地区富碱斑岩的地球化学、锆石SHRIMP U-Pb定年及成因[J].地质通报, 2009, 28(12):786-803. |
[8] | 和文言, 莫宣学, 喻学惠, 等.滇西北衙煌斑岩的岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束[J].岩石学报, 2014, 30(11):3287-3300. |
[9] | 毕献武, 胡瑞忠, 叶造军, 等. A型花岗岩类与铜成矿关系研究:以马厂箐铜矿为例[J].中国科学(D辑), 1999, 19(6):489-495. |
[10] | 黄永高, 罗改, 张彤, 等.滇西丽江地区新生代富碱斑岩年代学、地球化学特征及其地质意义[J].现代地质, 2018, 32(1):28-44. |
[11] | 万哨凯, 夏斌, 张玉泉.老君山正长岩锆石SHRIMP定年[J].大地构造与成矿学, 2005, 29(4):522-526. doi: 10.3969/j.issn.1001-1552.2005.04.013 |
[12] | 黄景厚, 周清, 王宏, 等.四川盐源西范坪渐新世含矿二长斑岩成因浅析[J].地质学报, 2019, 93(3):622-632. |
[13] | 徐恒, 崔银亮, 周家喜, 等.云南永胜分水岭矿区富碱斑岩地球化学、锆石U-Pb年龄及其地质意义[J].大地构造与成矿学, 2016, 40(3):614-624. |
[14] | 和文言, 喻学惠, 莫宣学, 等.滇西北衙多金属矿田矿床成因类型及其与富碱斑岩关系初探[J].岩石学报, 2012, 28(5):1401-1412. |
[15] | 和文言, 莫宣学, 喻学惠, 等.滇西北衙金多金属矿床锆石U-Pb和辉钼矿Re-Os年龄及其地质意[J].岩石学报, 2013, 29(4):1301-1310. |
[16] | Ludwig K R. Isoplot 3.70:A Geochronological Toolkit for Microsoft Excel[M]. California:Berkeley Geochronology Center, 2008:1-74. |
[17] | 靳新娣, 朱和平.岩石样品中43种元素的高分辨等离子质谱测定[J].分析化学, 2000, 28(5):563-567. doi: 10.3321/j.issn:0253-3820.2000.05.008 |
[18] | 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 |
[19] | Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4):370-384. doi: 10.1017/S0016756800058222 |
[20] | Middlmost E. Naming materials in the magma/igneous rock system earth[J]. Science Reviews, 1994, 37(3/4):215-224. |
[21] | Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 1984: 63-114. |
[22] | 毛晓长, 尹福光, 廖世勇.金沙江-哀牢山构造带中段桃花村岩体的LA-ICP-MS U-Pb锆石U-Pb定年及地质意义[J].矿物岩石, 2012, 32(3):70-76. doi: 10.3969/j.issn.1001-6872.2012.03.010 |
[23] | 洪涛, 游军, 吴楚, 等.滇西桃花花岗斑岩中新太古代-古元古代锆石年龄信息:对扬子板块西缘基底时代的约束[J].岩石学报, 2015, 31(9):2583-2596. |
[24] | 邓军, 杨立强, 王长明.三江特提斯复合造山与成矿作用研究进展[J].岩石学报, 2011, 27(9):2501-2509. |
[25] | Xiao L, Clemens J D. Origin of potassic (C-type) adakite magmas:Experimental and field constraints[J]. Lithos, 2007, 95(3/4):399-414. |
[26] | 张旗, 王焰, 刘伟, 等.埃达克岩的特征及其意义[J].地质通报, 2002, 21(7):231-235. |
[27] | 张旗, 许继峰, 王焰, 等.埃达克岩的多样性[J].地质通报, 2004, 23(9/10):959-965. |
[28] | Kaygusuz A, Siebel W, Sen C. Petrochemistry and petrology of Itype granitoids in an arc setting:the composite Torul Pluton. Eastern Pontides, NE Turkey[J]. Internation Journal of Earth sciences, 2008, 97(4):739-764. doi: 10.1007/s00531-007-0188-9 |
[29] | Altherr R, Siebel W. Ⅰ-type plutonism in a continental back-arc setting:Miocene granitoids and monzonites from the central Aegean Sea. Greece[J]. Contributions to Mineralogy and Petrology, 2002, 143(4):397-415. doi: 10.1007/s00410-002-0352-y |
[30] | Martin H. Adakite magmas:modern analogues of Archaean granitoids[J]. Lithos, 1999, 46:411-429. doi: 10.1016/S0024-4937(98)00076-0 |
[31] | 潘桂棠, 徐强, 侯增谦, 等.西南"三江"多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社, 2003:1-420. |
Distribution of the main magma dating results of the Lijiang-Yanyuan tectonic zone(a) and geological map of the Ninglang area(b)
The alterations of the monzonite porphyry including potassium-silication (a), hornfelsed alteration (b), pyritization (c) and ferritzation (d)
Cathodoluminescence images of representative zircons from the Guangmashan monzonite porphyry
U-Pb concordia plot (a) and weighted mean 206Pb/238U age (b) of zircons from the Guangmashan monzonite porphyry
A.R-SiO2(a), TAS (b) and A/CNK-A/NK(c) diagrams
Chondrite-normalized REE patterns for the Guangmashan monzonitic porphyry
La-La/Yb(a), Th-Ni (b) diagrams and discrimination diagrams for source (c, d) of the Guangmashan monzonite porphyry