2019 Vol. 38, No. 11
Article Contents

ZHANG Heng, GAO Linzhi, ZHANG Chuanheng, DING Xiaozhong, LI Tingdong, SONG Biao, LIU Haogang, GONG Chengqiang, ZHANG Jibiao. Paleoproterozoic magmatic and metamorphic events in southwestern Yangtze Block: The position and evolution of the Yangtze Block within the Nuna supercontinent[J]. Geological Bulletin of China, 2019, 38(11): 1777-1789.
Citation: ZHANG Heng, GAO Linzhi, ZHANG Chuanheng, DING Xiaozhong, LI Tingdong, SONG Biao, LIU Haogang, GONG Chengqiang, ZHANG Jibiao. Paleoproterozoic magmatic and metamorphic events in southwestern Yangtze Block: The position and evolution of the Yangtze Block within the Nuna supercontinent[J]. Geological Bulletin of China, 2019, 38(11): 1777-1789.

Paleoproterozoic magmatic and metamorphic events in southwestern Yangtze Block: The position and evolution of the Yangtze Block within the Nuna supercontinent

More Information
  • The search for crystalline basement outcrops in the southwestern portion of the Yangtze Block has been the study object of many geologists, and the position and the evolution of the Yangtze Block within the Precambrian supercontinent of Nuna have also been an important research subject. In this study, SHRIMP zircon U-Pb dating was conducted for three granite samples underlying the Kunyang Group and, as a result, the weighted mean 207Pb/206Pb ages of 2347.3±4.9Ma, 2324.3±8.6Ma, and 2329.4±5.9Ma were obtained respectively. These data further confirm that there were 2.32~2.35Ga magmatic events in the southwest Yangtze plate, which were the response of the Yangtze Block to the Arrowsmith orogenic event with the assembly of the Nuna supercontinent. Especially a sample yielded weighted mean 207Pb/206Pb ages of 1909.8±5.7Ma and 1843.1±7.6Ma, which indicate for the first time the existence of two periods of metamorphism respectively at 1.90Ga and 1.84Ga in the southwestern portion of the Yangtze Block. Along with previous researches, the authors have reached the conclusion that there were 2.91~2.84Ga, 2.36~2.32Ga and 2.28~2.19Ga magmatic events and 1.97~1.95Ga, 1.90Ga and 1.84~1.83Ga metamorphic events in the southwest Yangtze Block. These data provide important evidence for ascertaining the position and the evolution of the Yangtze Block within the supercontinent of Nuna.

  • 加载中
  • [1] Cawood P A, Wang Y, Xu Y, et al. Locating South China in Rodinia and Gondwana:a fragment of greater India lithosphere?[J]. Geology, 2013, 41(8):903-906.

    Google Scholar

    [2] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China:constraints from SHRIMP UPb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174(12):117-128.

    Google Scholar

    [3] Li Z X, Li X H, Li W X, et al. Was Cathaysia part of Proterozoic Laurentia?-new data from Hainan Island, south China[J]. Terra Nova, 2008, 20(2):154-164. doi: 10.1111/j.1365-3121.2008.00802.x

    CrossRef Google Scholar

    [4] Li Z X, Li X H, Zhou H, et al. Grenvillian continental collision in south China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30(2):163-166.

    Google Scholar

    [5] 舒良树.华南构造演化的基本特征[J].地质通报, 2012, 31(7):1035-1053.

    Google Scholar

    [6] Shu L S, Jahn B M, Charvet J, et al. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China):evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 2014, 314(1):154-186.

    Google Scholar

    [7] Wang X L, Zhou J C, Qiu J S, et al. Geochemistry of the Meso-to Neoproterozoic basic-acid rocks from Hunan Province, South China:implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 2004, 135(1):79-103.

    Google Scholar

    [8] Zhao G C. Jiangnan Orogen in South China:developing from divergent double subduction[J]. Gondwana Research, 2015, 27(3):1173-1180. doi: 10.1016/j.gr.2014.09.004

    CrossRef Google Scholar

    [9] Zhao G C, Cawood P A. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block; implications for Neoproterozoic collision-related assembly of the South China Craton[J]. American Journal of Science, 1999, 299(4):309-339. doi: 10.2475/ajs.299.4.309

    CrossRef Google Scholar

    [10] Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222:13-54.

    Google Scholar

    [11] Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China:Implications for tectonic evolution[J]. Precambrian Research, 2006, 145(1/2):111-130.

    Google Scholar

    [12] Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China:coeval arc magmatism and sedimentation[J]. Precambrian Research, 2009, 170(12):27-42.

    Google Scholar

    [13] Li X H, Li Z X, Li W X. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China:A synthesis[J]. Gondwana Research, 2014, 25(3):1202-1215. doi: 10.1016/j.gr.2014.01.003

    CrossRef Google Scholar

    [14] Xu Y J, Cawood P A, Du Y, et al. Linking south China to northern Australia and India on the margin of Gondwana:Constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata[J]. Tectonics, 2013, 32(6):1547-1558. doi: 10.1002/tect.20099

    CrossRef Google Scholar

    [15] Yao J L, Shu L S, Santosh M. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry-new clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 2011, 20(23):553-567.

    Google Scholar

    [16] Yu J H, Wang L, O'reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 2009, 174(34):347-363.

    Google Scholar

    [17] Liu Q, Yu J H, O'Reilly S Y, et al. Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China[J]. Precambrian Research, 2014, 248:72-95. doi: 10.1016/j.precamres.2014.04.001

    CrossRef Google Scholar

    [18] Xia Y, Xu X S, Zhu K Y. Paleoproterozoic S- and A-type granites in southwestern Zhejiang:magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement[J]. Precambrian Research, 2012, 216:177-207.

    Google Scholar

    [19] 耿元生, 旷红伟, 柳永清, 等.扬子地块西, 北缘中元古代地层的划分与对比[J].地质学报, 2017, 91(10):2151-2174. doi: 10.3969/j.issn.0001-5717.2017.10.001

    CrossRef Google Scholar

    [20] Wang W, Cawood P A, Zhou M F, et al. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent[J]. Earth and Planetary Science Letters, 2016, 433:269-279. doi: 10.1016/j.epsl.2015.11.005

    CrossRef Google Scholar

    [21] Gao S, Ling W, Qiu Y, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(1314):2071-2088.

    Google Scholar

    [22] Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 2011, 311(2):153-182.

    Google Scholar

    [23] Guo J L, Gao S, Wu Y B, et al. 3.45 Ga granitic gneisses from the Yangtze Craton, South China:implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242:82-95. doi: 10.1016/j.precamres.2013.12.018

    CrossRef Google Scholar

    [24] Peng M, Wu Y, Gao S, et al. Geochemistry, zircon U-Pb age and Hf isotope Compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block:constraints on petrogenesis and geologic implications[J]. Gondwana Research, 2012, 22(1):140-151. doi: 10.1016/j.gr.2011.08.012

    CrossRef Google Scholar

    [25] Wu Y B, Zheng Y F, Gao S, et al. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen[J]. Lithos, 2008, 101(34):308-322.

    Google Scholar

    [26] 张宗清, 张国伟, 唐栾寒, 等.鱼洞子群变质岩年龄及秦岭造山带太古宙基底[J].地质学报, 2001, 75(2):198-204. doi: 10.3321/j.issn:0001-5717.2001.02.008

    CrossRef Google Scholar

    [27] Greentree M R, Li Z X. The oldest known rocks in southwestern China:SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 2008, 33(56):289-302.

    Google Scholar

    [28] Zhao X F, Zhou M F, Li J W, et al. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China:implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 2010, 182(12):57-69.

    Google Scholar

    [29] Kou C H, Zhang Z C, Santosh M, et al. Oldest volcanic-hosted submarine iron ores in South China:Evidence from zircon U-Pb geochronology and geochemistry of the Paleoproterozoic Dahongshan iron deposit[J]. Gondwana Research, 2017, 49:182-204. doi: 10.1016/j.gr.2017.05.016

    CrossRef Google Scholar

    [30] Zhang H, Gao L Z, Zhang C H, et al. The Discovery of the 2.35 Ga Crystalline Basement in the Southwest of the Yangtze Block and its Geological Significance[J]. Acta Geologica Sinica, 2018, 92(6):2460-2461. doi: 10.1111/1755-6724.13749

    CrossRef Google Scholar

    [31] 花友仁.对东川铜矿区地层划分和区域构造的探讨[J].地质论评, 1959, 19(4):155-162. doi: 10.3321/j.issn:0371-5736.1959.04.002

    CrossRef Google Scholar

    [32] 李希勋, 吴懋德, 段锦荪.昆阳群的层序及顶底问题[J].地质论评, 1984, 30(5):399-407. doi: 10.3321/j.issn:0371-5736.1984.05.001

    CrossRef Google Scholar

    [33] 吴根耀.天宝山组地层问题初议[J].地层学杂志, 1986, 10(3):161-168.

    Google Scholar

    [34] 吴根耀.天宝山组火山岩形成的大地构造环境[J].大自然探索, 1987, 6(2):115-124.

    Google Scholar

    [35] 吴懋德, 段锦荪, 宋学良, 等.云南昆阳群地质[M].昆明:云南科技出版社, 1990:1-265.

    Google Scholar

    [36] 李复汉, 覃嘉铭, 申玉连, 等.康滇地区的前震旦系[M].重庆:重庆出版社, 1988, 3:56-60.

    Google Scholar

    [37] 刘肇昌, 李凡友, 钟康惠, 等.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社, 1996.

    Google Scholar

    [38] 吕世琨, 戴恒贵.康滇地区建立昆阳群(会理群)层序的回顾和重要赋矿层位的发现[J].云南地质, 2001, 20(1):1-24. doi: 10.3969/j.issn.1004-1885.2001.01.001

    CrossRef Google Scholar

    [39] 戴恒贵.康滇地区昆阳群和会理群地层, 构造及找矿靶区研究[J].云南地质, 1997, 16(1):1-39.

    Google Scholar

    [40] 张传恒, 高林志, 武振杰, 等.滇中昆阳群凝灰岩锆石SHRIMP U-Pb年龄:华南格林威尔期造山的证据[J].科学通报, 2007, 52(7):818-824. doi: 10.3321/j.issn:0023-074X.2007.07.016

    CrossRef Google Scholar

    [41] 高林志, 张恒, 张传恒, 等.滇东昆阳群地层序列的厘定及其在中国地层表的位置[J].地质论评, 2018, 64(2):283-298.

    Google Scholar

    [42] 高林志, 尹崇玉, 张恒, 等.云南晋宁地区柳坝塘组凝灰岩SHRIMP锆石U-Pb年龄及其对晋宁运动的制约[J].地质通报, 2015, 34(9):1595-1604.

    Google Scholar

    [43] Chen W T, Zhou M F. Paragenesis, stable isotopes, and molybdenite Re-Os isotope age of the Lala iron-copper deposit, southwest China[J]. Economic Geology, 2012, 107(3):459-480. doi: 10.2113/econgeo.107.3.459

    CrossRef Google Scholar

    [44] Chen W T, Zhou M F, Zhao X F. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China:implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 2013, 231:61-77. doi: 10.1016/j.precamres.2013.03.011

    CrossRef Google Scholar

    [45] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151(1):79-100.

    Google Scholar

    [46] Zhou M F, Zhao X F, Chen W T, et al. Proterozoic Fe-Cu Metallogeny and Its Connection with Supercontinental Cycles in the Southwestern Yangtze Block[J]. South China and North Vietnam, (submitted for publication), 2014, 139:59-82. doi: 10.1016/j.earscirev.2014.08.013

    CrossRef Google Scholar

    [47] Wang W, Zhou M F. Provenance and tectonic setting of the Paleo-to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China:implication for the breakup of the supercontinent Columbia[J]. Tectonophysics, 2014, 610:110-127. doi: 10.1016/j.tecto.2013.11.009

    CrossRef Google Scholar

    [48] 杨红, 刘福来, 杜利林, 等.扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义[J].岩石学报, 2012, 28(9):2994-3014.

    Google Scholar

    [49] Zhao X F, Zhou M F. Fe-Cu deposits in the Kangdian region, SW China:a Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province[J]. Mineralium Deposita, 2011, 46(7):731-747. doi: 10.1007/s00126-011-0342-y

    CrossRef Google Scholar

    [50] 金廷福, 李佑国, 费光春, 等.扬子地台西南缘大红山群红山组的锆石U-Pb年代学研究——对其原岩形成时代和变质时代的再限定[J].地质论评, 2017, 63(4):894-910.

    Google Scholar

    [51] 辜学达, 刘啸虎, 李宗凡.四川省岩石地层[M].武汉:中国地质大学出版社, 1997:1-147.

    Google Scholar

    [52] 周家云, 毛景文, 刘飞燕, 等.扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征[J].矿物岩石, 2011, 31(3):66-73. doi: 10.3969/j.issn.1001-6872.2011.03.010

    CrossRef Google Scholar

    [53] 王冬兵, 孙志明, 尹福光, 等.扬子地块西缘河口群的时代:来自火山岩锆石LA-ICP-MS U-Pb年龄的证据[J].地层学杂志, 2012, 36(3):630-635.

    Google Scholar

    [54] 关俊雷, 郑来林, 刘建辉, 等.四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义[J].地质学报, 2011, 85(4):482-490.

    Google Scholar

    [55] 孙志明, 尹福光, 关俊雷, 等.云南东川地区昆阳群黑山组凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J].地质通报, 2009, 28(7):896-900.

    Google Scholar

    [56] 朱华平, 范文玉, 周邦国, 等.论东川地区前震旦系地层层序:来自锆石SHRIMP及LA-ICP-MS测年的证据[J].高校地质学报, 2011, 17(3):452-461. doi: 10.3969/j.issn.1006-7493.2011.03.010

    CrossRef Google Scholar

    [57] 王子正, 郭阳, 杨斌, 等.扬子克拉通西缘1.73Ga非造山型花岗斑岩的发现及其地质意义[J].地质学报, 2013, 87(7):931-942. doi: 10.3969/j.issn.0001-5717.2013.07.003

    CrossRef Google Scholar

    [58] 侯林, 丁俊, 邓军, 等.云南武定迤纳厂铁铜矿岩浆角砾岩LAICP-MS锆石U-Pb年龄及其意义[J].地质通报, 2013, 32(4):580-588.

    Google Scholar

    [59] 郭阳, 王生伟, 孙晓明, 等.扬子地台西南缘古元古代末的裂解事件——来自武定地区辉绿岩锆石U-Pb年龄和地球化学证据[J].地质学报, 2014, 88(9):1651-1665.

    Google Scholar

    [60] 杨斌, 王伟清, 董国臣, 等.扬子地台西南缘康滇断隆带海孜双峰式侵入岩体年代学、地球化学及其地质意义[J].岩石学报, 2015, 31(5):1361-1373.

    Google Scholar

    [61] 庞维华, 任光明, 孙志明, 等.扬子地块西缘古-中元古代地层划分对比研究:来自通安组火山岩锆石U-Pb年龄的证据[J].中国地质, 2015, 42(4):921-936. doi: 10.3969/j.issn.1000-3657.2015.04.010

    CrossRef Google Scholar

    [62] 任光明, 庞维华, 孙志明, 等.扬子西缘会理地区通安组角闪岩锆石U-Pb定年及其地质意义[J].矿物岩石, 2014, 34(2):33-39.

    Google Scholar

    [63] 王冬兵, 尹福光, 孙志明, 等.扬子陆块西缘古元古代基性侵入岩LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义[J].地质通报, 2013, 32(4):617-630.

    Google Scholar

    [64] Fan H P, Zhu W G, Li Z X, et al. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia:the Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block[J]. Lithos, 2013, 168:85-98.

    Google Scholar

    [65] 尹福光, 孙志明, 白建科.东川、滇中地区中元古代地层格架[J].地层学杂志, 2011, 35(1):49-54.

    Google Scholar

    [66] 李怀坤, 张传林, 姚春彦, 等.扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成[J].中国科学:地球科学, 2013, 43(8):1287-1298.

    Google Scholar

    [67] 尹福光, 孙志明, 任光明, 等.上扬子陆块西南缘早-中元古代造山运动的地质记录[J].地质学报, 2012, 86(12):1917-1932. doi: 10.3969/j.issn.0001-5717.2012.12.005

    CrossRef Google Scholar

    [68] 耿元生, 杨崇辉, 杜利林, 等.天宝山组形成时代和形成环境[J].地质论评, 2007, 53(4):556-563. doi: 10.3321/j.issn:0371-5736.2007.04.014

    CrossRef Google Scholar

    [69] 宋彪, 张玉海, 万渝生, 等.锆石SHRIMP样品靶制作, 年龄测定及有关现象讨论[J].地质论评, 2002, (S1):26-30.

    Google Scholar

    [70] Williams I S. U-Th-Pb geochronology by ion microprobe[J]. Reviews in Economic Geology, 1998, 7:1-35.

    Google Scholar

    [71] Black L P, Kamo S L, Allen C M, et al. TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical geology, 2003, 200(12):155-170.

    Google Scholar

    [72] Ludwig K R. SQUID 1.02, a user's manual[M]. Berkeley Geochronological Center Special Publication, USA, 2001.

    Google Scholar

    [73] Ludwig K, Vital F, Sprudel F, et al. 3.00. A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, California, 2003: 478-490.

    Google Scholar

    [74] Lan C Y, Chung S L, Lo C H, et al. First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia[J]. Geology, 2001, 29(3):219-222. doi: 10.1130/0091-7613(2001)029<0219:FEFACC>2.0.CO;2

    CrossRef Google Scholar

    [75] Nam T N, Toriumi M, Sano Y, et al. 2.9, 2.36, and 1.96 Ga zircons in orthogneiss south of the Red River shear zone in Viet Nam:evidence from SHRIMP U-Pb dating and tectonothermal implications[J]. Journal of Asian Earth Sciences, 2003, 21(7):743-753. doi: 10.1016/S1367-9120(02)00089-5

    CrossRef Google Scholar

    [76] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]. Precambrian Research, 2006, 151(34):265-288.

    Google Scholar

    [77] Sun M, Chen N, Zhao G, et al. U-Pb zircon and Sm-Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China:implication for the Paleoproterozoic tectonic history of the Yangtze craton[J]. American Journal of Science, 2008, 308(4):469-483. doi: 10.2475/04.2008.03

    CrossRef Google Scholar

    [78] Yin C, Lin S, Davis D W, et al. 2.1-1.85Ga tectonic events in the Yangtze Block, South China:petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 2013, 182:200-210.

    Google Scholar

    [79] Pehrsson S J, Berman R G, Eglington B, et al. Two Neoarchean supercontinents revisited:The case for a Rae family of cratons[J]. Precambrian Research, 2013, 232:27-43. doi: 10.1016/j.precamres.2013.02.005

    CrossRef Google Scholar

    [80] Xiong Q, Zheng J P, Yu C M, et al. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang:signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 2009, 54(3):436-446.

    Google Scholar

    [81] Peng M, Wu Y B, Wang J, et al. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication[J]. Chinese Science Bulletin, 2009, 54(6):1098-1104.

    Google Scholar

    [82] Berman R G, Davis W J, Pehrsson S. Collisional Snowbird tectonic zone resurrected:Growth of Laurentia during the 1.9Ga accretionary phase of the Hudsonian orogeny[J]. Geology, 2007, 35(10):911-914. doi: 10.1130/G23771A.1

    CrossRef Google Scholar

    [83] Eglington B M, Pehrsson S J, Ansdell K M, et al. A domain-based digital summary of the evolution of the Palaeoproterozoic of North America and Greenland and associated unconformity-related uranium mineralization[J]. Precambrian Research, 2013, 232:4-26. doi: 10.1016/j.precamres.2013.01.021

    CrossRef Google Scholar

    [84] Berman R G, Pehrsson S, Davis W J, et al. The Arrowsmith orogeny:Geochronological and thermobarometric constraints on its extent and tectonic setting in the Rae craton, with implications for pre-Nuna supercontinent reconstruction[J]. Precambrian Research, 2013, 232:44-69. doi: 10.1016/j.precamres.2012.10.015

    CrossRef Google Scholar

    [85] 张丽娟, 马昌前, 王连训, 等.扬子地块北缘古元古代环斑花岗岩的发现及其意义[J].科学通报, 2011, 56(1):44-57.

    Google Scholar

    [86] 汪正江, 王剑, 杜秋定, 等.扬子克拉通内存在太古代成熟陆壳:来自岩石学、同位素年代学和地球化学证据[J].科学通报, 2013, 58(17):1651-1660. doi: 10.1360/csb2013-58-17-1651

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1121) PDF downloads(10) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint