2019 Vol. 38, No. 10
Article Contents

YANG Duo, LI Mengmeng, GONG Quande, CHEN Tianhong, MAO Lei, QIN Tian, ZHAO Liang. Chronology, geochemical characteristics and its geological significance of Mesozoic volcanic rocks in Ganzhuyinaobao area, Abag Banner, Inner Mongolia[J]. Geological Bulletin of China, 2019, 38(10): 1660-1674.
Citation: YANG Duo, LI Mengmeng, GONG Quande, CHEN Tianhong, MAO Lei, QIN Tian, ZHAO Liang. Chronology, geochemical characteristics and its geological significance of Mesozoic volcanic rocks in Ganzhuyinaobao area, Abag Banner, Inner Mongolia[J]. Geological Bulletin of China, 2019, 38(10): 1660-1674.

Chronology, geochemical characteristics and its geological significance of Mesozoic volcanic rocks in Ganzhuyinaobao area, Abag Banner, Inner Mongolia

  • LA-ICP-MS zircon U-Pb dating results and geochemical data for the Mesozoic volcanic rocks from the Ganzhuyinaobao area of Inner Mongolia were presented in order to constrain their chronology, petrogenesis and the regional tectonic evolution. Manketouebo Formation persilicic volcanic rocks and Meiletu Formation intermediate volcanic rocks are extensively distributed in the study area. LA-ICP-MS zircon U-Pb dating results show that rocks of the two formations were formed at 163.6±0.6Ma and 139.6±0.7Ma, respectively. Geochemical researches indicate that the volcanic rocks in Manketouebo Formation are characterized by rich silica and alkali but poor TFeO, Al2O3, TiO2, MgO, CaO and Na2O, belonging to the alkaline series. The rocks with characteristics of A-type granite are enriched in LREE and LILE (Rb, Ba, Th, U and K) and depleted in HREE, some(Ba, Sr) and HFSE, especially Nb, Ta, P and Ti, with highly negative Eu anomalies, suggesting that they originated from the melting of the crust rocks. The Meiletu Formation intermediate rocks belong to the alkaline series, with enrichment of alkali, K, Al2O3, TiO2, MgO and (LILEs) Rb, Ba, Th, U, K and depletion of HREE as well as Nb, Ta, Ti, Y, Yb and Lu and weak negative Eu anomalies. They were derived from the melting of mafic iron in the lower crust. Combined with characteristics of petrology and tectonic setting of the area, it is held that Manketouebo Formation persilicic volcanic rocks and Meiletu Formation intermediate volcanic rocks occurred in an intense lithopheric extension tectonic setting that was caused by the collapse or delamination of thickening crust resulting from the subduction of Mongolo-Okhotsk heading to the west slope of Da Hinggan Mountains-northern Hebei-western Liaoning region.

  • 加载中
  • [1] Sengör A M C, Natal' in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364:299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [2] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [3] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23:1342-1364. doi: 10.1016/j.gr.2012.05.015

    CrossRef Google Scholar

    [4] Xiao W J, Windley B F, Hao J, et al. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Oragenic Belt[J]. Tectonics, 2003, 22(6):1-8.

    Google Scholar

    [5] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26:207-224. doi: 10.1016/j.jseaes.2005.09.001

    CrossRef Google Scholar

    [6] 邵济安, 唐克东.中国东北地体与东北亚大陆边缘演化[M].北京:地震出版社, 1995.

    Google Scholar

    [7] 许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353.

    Google Scholar

    [8] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [9] 林强, 葛文春, 孙德有, 等.中国东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2):129-139.

    Google Scholar

    [10] 林强.东北亚中生代火山岩研究若干问题的思考[J].世界地质, 1999, 18(2):14-22.

    Google Scholar

    [11] 邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, 6(4):339-346. doi: 10.3321/j.issn:1005-2321.1999.04.017

    CrossRef Google Scholar

    [12] 陈志广, 张连昌, 万博.内蒙古满洲里晚侏罗世火山岩年代学和地球化学特征[C]//2006年全国岩石学与地球动力学研讨会, 2006: 77-79.http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200611002039.htm

    Google Scholar

    [13] Wu F Y, Lin J, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233:103-119. doi: 10.1016/j.epsl.2005.02.019

    CrossRef Google Scholar

    [14] 董树文, 张岳桥, 龙长兴, 等.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报, 2007, 81(11):1449-1457. doi: 10.3321/j.issn:0001-5717.2007.11.001

    CrossRef Google Scholar

    [15] Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic crustal growth:UPb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328:89-113. doi: 10.1016/S0040-1951(00)00179-7

    CrossRef Google Scholar

    [16] Jahn B M, Windley B, Natal' in B, et al. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 2004, 23:599-603. doi: 10.1016/S1367-9120(03)00124-X

    CrossRef Google Scholar

    [17] Guo F, Fan W M, Gao X F, et al. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China:Constraints on tectonic framework and Phanerozoic crustal growth[J]. Lithos, 2010, 120:563-578. doi: 10.1016/j.lithos.2010.09.020

    CrossRef Google Scholar

    [18] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North Chinaorogen:U-Pb dating, Hf isotopes and trace elements inzircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [19] Ludwig K R. ISOPLOT 3.00:A Geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003:1-70.

    Google Scholar

    [20] Hanchar J M, Miller C F. Zircon zonation patterns as revealed by cathodoluminescene and backscattered electron images:Implications for interpretation of complex crustal histories[J]. Chemical Geology, 1993, 110(1):1-13.

    Google Scholar

    [21] Claesson V S, Vetrin T, Bayanova H D. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia:A record of geological evolution from the Archean to the Palaeozoic[J]. Lithos, 2000, 51(1):95-108.

    Google Scholar

    [22] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon:Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [23] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [24] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [25] Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [26] Boynton W V. Cosmochemistry of the earth elements: Meteorite studies[C]//Henderson R. Rare Earth Element Geochemistry: Developments in Geochemistry. Amsterdam: Elsevier, 1984: 89-92.

    Google Scholar

    [27] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [28] 彭振安, 李红红, 张诗启, 等.内蒙古北山地区小狐狸山钼矿成矿岩体地球化学特征研究[J].地质与勘探, 2010, 46(2):291-298.

    Google Scholar

    [29] 杨启军, 徐义刚, 黄小龙, 等.高黎贡构造带花岗岩的年代学和地球化学及其构造意义[J].岩石学报, 2006, 22(4):817-834.

    Google Scholar

    [30] 贺淑赛, 李秋根, 王宗起, 等.内蒙古中部宝力高庙组长英质火山岩U-Pb-Hf同位素特征及其地质意义[J].北京大学学报(自然科学版), 2015, (1):50-64.

    Google Scholar

    [31] 陈英富, 王根厚, 段炳鑫.内蒙古东乌珠穆沁旗辉音敖包一带晚侏罗世火山岩特征及时代[J].中国地质, 2012, 39(6):1690-1699. doi: 10.3969/j.issn.1000-3657.2012.06.017

    CrossRef Google Scholar

    [32] 程银行, 滕学建, 李艳锋, 等.内蒙古海莫赛格酸性火山岩锆石U-Pb年龄、地球化学特征及其意义[J].岩石矿物学杂志, 2014, 33(2):211-225. doi: 10.3969/j.issn.1000-6524.2014.02.001

    CrossRef Google Scholar

    [33] 李鹏川, 李世超, 刘正宏, 等.内蒙古林西地区满克头鄂博组火山岩形成时代及构造环境[J].世界地质, 2016, 35(1):77-88. doi: 10.3969/j.issn.1004-5589.2016.01.008

    CrossRef Google Scholar

    [34] Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [35] Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. London:Pearson Education Limited, 1993:1-278.

    Google Scholar

    [36] Patino Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25:743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    CrossRef Google Scholar

    [37] King P L, Chappell B W, Allen C M, et al. Are A-type granites the high-temperature felsic granites Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences, 2001, 48(4):501-514. doi: 10.1046/j.1440-0952.2001.00881.x

    CrossRef Google Scholar

    [38] Harris N B W, Tindle A G, Tindle A G. Geochemical characteristics of collision-zone magmatism[J]. Spec. Publ. Geol. Soc. Lond., 1986, 19:67-81. doi: 10.1144/GSL.SP.1986.019.01.04

    CrossRef Google Scholar

    [39] Pearce J A. Trole of sub-continental lithosphere in magma genesis at destructive plate margins[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths. Nantwich Shiva: Academic Press, 1983: 230-249.

    Google Scholar

    [40] Tischendorf G, Paelchen W. Zur Klassifikation von Granitoiden/Classification of granitoids[J]. Zeitschrift fuer Geologische Wissenschaften, 1985, 13(5):615-627.

    Google Scholar

    [41] McCarron J J, Smellie J L. Tectonic Implications of Fore-Arc Magmatism and Generation of High-Magnesian Andesites:Alexander Island[J]. Antarctica. Journal of the Geological Society, 1998, 155(2):269-280. doi: 10.1144/gsjgs.155.2.0269

    CrossRef Google Scholar

    [42] Atherton M P, Petford N., Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust[J]. Nature, 1993, 362(6416):144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [43] Rapp P P, Shimizu N, Norman M D, et al. Reaction between slabderived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa[J]. Chemical Geology, 1999, 160(4):335-356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [44] Dungan M A, Lindstrom M M, McMillan N J, et al. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico:1. The petrology and geochemistry of the Servilleta Basalt[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1986, 91(B6):5999-6028. doi: 10.1029/JB091iB06p05999

    CrossRef Google Scholar

    [45] 郭锋, 范蔚茗, 王岳军, 等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报, 2001, 17(1):161-168.

    Google Scholar

    [46] Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell, 1985:1-312.

    Google Scholar

    [47] 王焰, 钱青, 刘良, 等.不同构造环境中双峰式火山岩的主要特征[J].岩石学报, 2000, 16(2):169-173.

    Google Scholar

    [48] Chen B, Jahn B M. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications[J]. Geological Magazine, 2002, 139(1):1-13. doi: 10.1017/S0016756801006100

    CrossRef Google Scholar

    [49] Hong D W, Zhang J S, Wang T, et al. Continental crustal growth and the supercontinental cycle:evidence from the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2004, 23(5):799-813. doi: 10.1016/S1367-9120(03)00134-2

    CrossRef Google Scholar

    [50] Zhang X H, Wilde S A, Zhang H F, et al. Early Permian high-K calcalkaline volcanic rocks from NW Inner Mongolia, North China:geochemistry, origin and tectonic implications[J]. Journal of the Geological Society, 2011, 168(2):525-543. doi: 10.1144/0016-76492010-094

    CrossRef Google Scholar

    [51] Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Euroasia and its potential relation to Cenozoic extrusion along the eastern margin of Eurasia[J]. Geology, 1995, 23:719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

    CrossRef Google Scholar

    [52] Kravchinsky V A, Cogné J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1):34-57. doi: 10.1046/j.1365-246x.2002.01557.x

    CrossRef Google Scholar

    [53] Sorokin A A, Kotov A B, Sal'nikova E B, et al. Granitoids of the Tyrma-Bureya complex in the northern Bureya-Jiamusi superterrane of the Central Asian fold belt:Age and geodynamic setting[J]. Russian Geology and Geophysics, 2010, 51(5):563-571. doi: 10.1016/j.rgg.2010.04.011

    CrossRef Google Scholar

    [54] 孟恩, 许文良, 杨德彬, 等.满洲里地区灵泉盆地中生代的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报, 2011, 27(4):1209-1226.

    Google Scholar

    [55] 徐美君, 许文良, 孟恩, 等.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报, 2011, 30(9):1321-1338. doi: 10.3969/j.issn.1671-2552.2011.09.001

    CrossRef Google Scholar

    [56] Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J]. Lithos, 2008, 102(1/2):138-157.

    Google Scholar

    [57] 王建国, 和钟铧, 许文良.大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报, 2013, 29(3):853-863.

    Google Scholar

    [58] Xu M J, Xu W L, Wang F, et al. Geochronology and geochemistry of the Early Jurassic granitoids in the northwestern Lesser Xing'an Range, NE China and its tectonic implications[J]. Acta Petrologina Sinica, 2013, 29(2):354-368.

    Google Scholar

    [59] Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 1979, 11(7):468.

    Google Scholar

    [60] Eby G N. Chemical subdivision of the A-typegranitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 5(3):113-124.

    Google Scholar

    [61] 许保良, 阎国翰, 张臣. A型花岗岩的岩石1学亚类及其物质来源[J].地学前缘, 1998, 5(3):113-124. doi: 10.3321/j.issn:1005-2321.1998.03.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(485) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint