Citation: | FAN Bingliang, ZHANG Xinli, YU Tao, BAI Tao, FENG Dexin. The genesis of Jitang duplex granites in east Tibet: Evidence from the zircon UPb age and rock geochemistry[J]. Geological Bulletin of China, 2019, 38(8): 1274-1286. |
Jitang duplex granites are located in the northern section of the Lancang River magma belt, and serve as an important window for studying the evolution process of Lancang River juncture zone. In this paper, the LA-ICP-MS zircon U-Pb chronology and rock geochemistry of biotite monzonitic granite and granitic diorite in Jitang duplex granites of Kakagong area along northern Lancang River were studied. The results show that the selected zircon samples exhibit obvious growth ring zone, the Th/U ratio is generally higher than 0.4, and the typical magma zircon has average weighted 206Pb/238U age of 222.8±1.5Ma (MSWD=1.60, n=16), 213.6±1.1Ma (MSWD=0.98, n=20) and 221.1±1.5Ma (MSWD=1.30, n=15), suggesting Late Triassic. The geochemical characteristics of rocks show that the Jitang biotite monzonitic granite and granitic diorite have relatively consistent content of main and trace elements, and their changing characteristics are also consistent. It is shown that these two kinds of rocks might have been derived from the same magma, and the Jitang duplex granites belong to the aluminum S-type granite, which has the same petrogeochemical properties as Lincang granite and Newcastle granite, and has a unified tectonic magmatic activity mode along the Lancang River granite belt. The formation of Jitang duplex granites was related to the thickening and warming of the crust and the deep melting effect related to the shearing and stretching period of lithosphere, with the closure time of Lancang Jiang Ocean was probably at about 273Ma.
[1] | 李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报, 1987, (2):155-166. |
[2] | 邓万明, 郑锡澜, 松本征夫.青海可可西里地区新生代火山岩的岩石特征与时代[J].岩石矿物学杂志, 1996, (4):2-11. |
[3] | Kapp P, Murphy M A, Yin A. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4):1029. |
[4] | 王保弟, 王立全, 强巴扎西, 等.早三叠世北澜沧江结合带碰撞作用:类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据[J].岩石学报, 2011, 27(9):2752-2762. |
[5] | 和钟铧, 王天武, 李才, 等.对藏北羌塘地体阿木岗群的新认识[J].世界地质, 2000, (1):1-7. doi: 10.3969/j.issn.1004-5589.2000.01.001 |
[6] | 祁生胜, 王毅智, 何世豪, 等.唐古拉地区尕羊晚二叠世碰撞型花岗岩的确定和构造意义[J].西北地质, 2009, 42(3):26-35. doi: 10.3969/j.issn.1009-6248.2009.03.002 |
[7] | 陶琰, 毕献武, 李金高, 等.西藏吉塘花岗岩地球化学特征及成因[J].岩石学报, 2011, 27(9):2763-2774. |
[8] | 陈福忠, 刘朝基, 雍永源.藏东花岗岩类及铜锡金成矿作用[M].北京:地质出版社, 1994:1-197. |
[9] | 樊炳良, 白涛, 冯德新, 等.藏东纽多黑云母二长花岗岩锆石U-Pb年龄及成因[J].地质通报, 2018, 37(7):1226-1235. |
[10] | Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004 |
[11] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082 |
[12] | Sun S S, McDonough W F. Chemical and isotopic systematics in ocean basalt: Implication for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society of London Special Publications, 1989, 42: 313-345. |
[13] | 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2007, 8(16):1589-1604. |
[14] | Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration ofHadean zircon from the Jack Hills[J]. Australia. Geochim. Cosmochim. Acta, 2005, 69(3):637-648. doi: 10.1016/j.gca.2004.07.006 |
[15] | Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723):841-844. doi: 10.1126/science.1110873 |
[16] | Ferry J M, Waston E B. New thermodynamic models and revised calibrations for the Ti-in-rutile thermometers Contrib[J]. Mineral. Petrol., 2007, 154(4):429-437. doi: 10.1007/s00410-007-0201-0 |
[17] | Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in plutonic rocks[J]. Geology, 2007, 35(7):635-638. doi: 10.1130/G23505A.1 |
[18] | Chappell B, White A J R. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh[J]. Earth Sciences, 1992, 83:1-26. |
[19] | Sylvester P J. Post-collisional alkaline granites[J]. Journal of Geology, 1998, 97(3):261-280. |
[20] | England P C, Thompson A B. Pressure-temperature-time paths of regional metamorphism, Part Ⅰ:Heat transfer during the evolution of regions of thickened continental crust[J]. Petrology, 1984, 25:894-928. doi: 10.1093/petrology/25.4.894 |
[21] | 蒋光武, 谢尧武, 白珍平, 等.青藏高原班公湖-怒江缝合带丁青-碧土段大地构造演化[J].地质通报, 2009, 28(9):1259-1266. doi: 10.3969/j.issn.1671-2552.2009.09.014 |
Tectonic location of study area (a) and regional geological sketch map (b)
Simplified geological map of Jitang duplex granites
SiO2-K2O(a)and A/CNK-A/NK(b)plots of the Jitang duplex granites
Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace earth element patterns (b, d) of the Jitang duplex granites
The zircon U-Pb concordia diagrams of the Jitang duplex granites
Plots of the Jitang duplex granites in ACF diagram for division of I- and S-type granites
Al2O3/TiO2-CaO/Na2O(a)and Rb/Sr-Rb/Ba(b)diagrams of the Jitang duplex granites