2019 Vol. 38, No. 6
Article Contents

CHANG Zufeng, MAO Zebin, MA Baoqi, DAI Boyang. The Amojiang fault zone and Mojiang M5.9 earthquake in 2018 in southern Yunnan Province[J]. Geological Bulletin of China, 2019, 38(6): 967-976.
Citation: CHANG Zufeng, MAO Zebin, MA Baoqi, DAI Boyang. The Amojiang fault zone and Mojiang M5.9 earthquake in 2018 in southern Yunnan Province[J]. Geological Bulletin of China, 2019, 38(6): 967-976.

The Amojiang fault zone and Mojiang M5.9 earthquake in 2018 in southern Yunnan Province

  • Field investigation shows that fault mouths are developed on the planation surface Ⅲ and river terrace 4 in the Amojiang fault zone, and below them there is no indication of fault landforms.Structural rocks dated by SEM are Early Pleistocene in age and are cemented compactly or half consolidated, and a few fault gouges dated by ESR as 549±54ka and developed on the fault plains and Middle-Upper Pleistocene deposits covering the faults have not been displaced or deformed tectonically. All these phenomena suggest that the fault zone was mainly active in Early-Middle Pleistocene. The 2018 Mojaing M5.9 earthquake occurred on the western branch of the Amojiang fault zone, and the long azimuth of isoseismal lines of the quake was in NW direction, consistent with the strike of the fault, suggesting that the seismogenic structure of the quake should be the western branch of the fault zone. Despite of no signs of activeness in Late Quaternary along the fault zone, the Amojiang fault zone itself became a broad relative weak belt. Affected by the SE extrusion of the Tibetan Plateau matters, the Simao block where the epicenter is located moved southward. Although the Amojiang fault zone was in absence of evident ground activity during Late Quaternary, the zone itself formed broad weak structural belt. Under the circumstance of the NS-trending tectonic compression stresses, stresses concentration in local area could also give rise to new break and induce the middle-large earthquakes like the Amojiang M5.9 earthquake.Regionally, there are similar fault zones in structural conditions, such as the Mile-Shizong fault zone in southeastern Yunnan, along which there historically occurred 11 earthquakes of magnitude over M5.0. Therefore, the researchers should pay attention to the regional large faults which were not sub-surficially active in Late Quaternary, but still have potential seismic risk in the regional seismic risk assessment.

  • 加载中
  • [1] 云南省地质矿产局.云南省区域地质志[M].北京:地质出版社, 1990.

    Google Scholar

    [2] 安晓文, 常祖峰.云南第四纪活动断裂[M].北京:地震出版社, 2018.

    Google Scholar

    [3] 虢顺民, 计凤桔, 向宏发, 等.红河活动断裂带[M].北京:海洋出版社, 2001.

    Google Scholar

    [4] 向宏发, 韩竹军, 虢顺民, 等.红河断裂带大型右旋走滑运动与伴生构造地貌变形[J].地震地质, 2004, 26(4):597-610. doi: 10.3969/j.issn.0253-4967.2004.04.006

    CrossRef Google Scholar

    [5] 向宏发, 虢顺民, 张晚霞, 等.红河断裂带南段中新世以来大型右旋位错量的定量研究[J].地震地质, 2007, 29(1):34-50. doi: 10.3969/j.issn.0253-4967.2007.01.003

    CrossRef Google Scholar

    [6] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12):611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    CrossRef Google Scholar

    [7] Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt:Tertiary left-lateral shear between Indochina and south China[J]. Nature, 1990, 343(6257):431-437. doi: 10.1038/343431a0

    CrossRef Google Scholar

    [8] Leloup P H, Kienast J R. High-temperature metamorphism in a major strike-slip shear zone:The Ailao Shan-Red River, People's Republic of China[J]. Earth Planet. Sci. Lett., 1993, 188(1/4):213-234.

    Google Scholar

    [9] Leloup P H, Lacassin R, Tapponnier P, et al. TheAilao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1/4):3-10, 13-84.

    Google Scholar

    [10] Allen C R, Gillespie A R, Yuan H, et al.Red river and associated faults, Yunnan province, China:Quaternary geology, slip rates, and Seismic hazard[J]. Geol. Soc. Am. Bull., 1984, 95(6):686-700. doi: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2

    CrossRef Google Scholar

    [11] Schoenbohm L M, Burchfiel B C, Chen L Z, et al.Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow[J]. Geol. Soc. Am. Bull., 2006, 118(5/6):672-688.

    Google Scholar

    [12] 虢顺民, 汪洋, 计凤桔.云南思茅-普洱地区中强震群发生的构造机制[J].地震研究, 1999, 22(2):105-115.

    Google Scholar

    [13] 朱成男, 周瑞琦.普洱磨黑6.8级地震区地质构造基本特征[J].地震研究, 1981, 4(1):69-76.

    Google Scholar

    [14] 杨晓平, 陈立春, 马文涛, 等. 2007年6月3日宁洱6.4级地震地表变形的构造分析和解释[J].地震学报, 2008, 30(2):165-175. doi: 10.3321/j.issn:0253-3782.2008.02.007

    CrossRef Google Scholar

    [15] 常祖峰, 陈晓利, 陈宇军, 等.景谷Ms6.6地震同震地表破坏特征与孕震构造[J].地球物理学报, 2016, 59(7):2539-2552.

    Google Scholar

    [16] 吴坤罡, 吴中海, 徐甫坤, 等.滇西南2014年景谷中-强震群的地质构造成因——茶房-普文断裂带贯通过程的构造响应[J].地质通报, 2016, 35(1):140-151. doi: 10.3969/j.issn.1671-2552.2016.01.013

    CrossRef Google Scholar

    [17] Tapponnier P. Propogation extrution tectonics in Aisa:New insights from simple experiments with plasticine[J]. Geology, 1982, 10:61-616. doi: 10.1130/0091-7613(1982)10<61a:CAROIO>2.0.CO;2

    CrossRef Google Scholar

    [18] Tapponnier P, Lacassin R, Leloup P H, et al. The Ailaoshan/Red River metamorphic belt:Tertiary left-lateral shear between Indochina and south China[J]. Nature, 1990, 343:431-437. doi: 10.1038/343431a0

    CrossRef Google Scholar

    [19] Minster J B, Jordan T H. Present-day plate motions[J]. J. Geophys. Res., 1978, 83(B11):5331-5354. doi: 10.1029/JB083iB11p05331

    CrossRef Google Scholar

    [20] 钟大赉, 丁林.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑), 1996, 26(4):289-295. doi: 10.3321/j.issn:1006-9267.1996.04.001

    CrossRef Google Scholar

    [21] 张培震, 王琪, 马宗晋.青藏高原现今构造变形特征与GPS速度场[J].地学前缘, 2002, 9(2):442-450. doi: 10.3321/j.issn:1005-2321.2002.02.023

    CrossRef Google Scholar

    [22] 张培震, 邓起东, 张国民, 等.中国大陆的强震活动与活动地块[J].中国科学(D辑), 2003, 33(S):12-20.

    Google Scholar

    [23] 许志琴, 张建新, 徐惠芬.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社, 1997.

    Google Scholar

    [24] 吴中海, 龙长兴, 范桃园, 等.青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J].地质通报, 2015, 32(1):1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002

    CrossRef Google Scholar

    [25] 计凤桔, 郑荣章, 李建平, 等.滇东、滇西地区主要河流低阶地地貌面年代学研究[J].地震地质, 2000, 22(3):265-276. doi: 10.3969/j.issn.0253-4967.2000.03.007

    CrossRef Google Scholar

    [26] 常祖峰, 张艳凤, 周青云, 等. 2013年洱源Ms5.5地震烈度分布及震区活动构造背景研究[J].中国地震, 2014, 30(4):560-570. doi: 10.3969/j.issn.1001-4683.2014.04.009

    CrossRef Google Scholar

    [27] 黄小龙, 吴中海, 蒋瑶, 等. 2013年3月3日云南大理洱源Ms5.5地震烈度分布及发震构造[J].地质通报, 34(1):135-145.

    Google Scholar

    [28] 朱凤鸣, 吴戈.一九七五年海城地震[M].北京:地震出版社, 1982.

    Google Scholar

    [29] 阚荣举, 张四昌, 晏凤桐.我国西南地区现代构造应力场与现代构造活动特征的探讨[J].地球物理学报, 1977, 20(2):96-109.

    Google Scholar

    云南省地质调查局第二区域地质测量队.1∶20万普洱幅区域调查报告.1976.

    Google Scholar

    云南省地质局第二区域地质测量队.1∶20万墨江幅区域调查报告.1975.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(720) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint