2019 Vol. 38, No. 5
Article Contents

LIN Chenggui, ZHENG Youye, CHENG Zhizhong, XU Rongke, CHEN Xin. An analysis of metallogenic physical conditions of the Yuqia eclogite-type rutile deposit in the North Qaidam[J]. Geological Bulletin of China, 2019, 38(5): 866-883.
Citation: LIN Chenggui, ZHENG Youye, CHENG Zhizhong, XU Rongke, CHEN Xin. An analysis of metallogenic physical conditions of the Yuqia eclogite-type rutile deposit in the North Qaidam[J]. Geological Bulletin of China, 2019, 38(5): 866-883.

An analysis of metallogenic physical conditions of the Yuqia eclogite-type rutile deposit in the North Qaidam

  • The Yuqia eclogite-type rutile deposit is located on the west side of the northern margin of the Qaidam Basin UHP metamorphic belt. And it is the first ultra-large rutile deposit found on the Tibetan Plateau. In order to study the ore-controlling factors and metallogenic mechanism of this deposit, the authors conducted detailed field geological survey and petrographic study. The characteristic minerals in the eclogite of the deposit were analyzed by electron microprobe analysis. It is shown that the garnets of coarse-grained high-Ti eclogite have preserved relatively complete compositional zoning; from the core to the edge, the garnet has a distinct zonality in chemical composition, type and granularity of mineral inclusions. However, the mineral particles in the fine and gneiss low-Ti eclogite are smaller, and the composition of the garnet is poor. Characteristics of p-T evolution of Yuqia eclogite show that it experienced a clockwise evolutionary trajectory from the temperature and pressure rise of the deep subduction stage to the temperature rise and pressure decrease of the early exhumation stage and then to the decrease of both temperature and pressure. The eclogite belongs to the metamorphic mineral assemblage with the preservation of the growth zone, which suggests that the formation of eclogites went through a dynamic process of relatively rapid subduction and reentry exhumation.

  • 加载中
  • [1] Meinhold G. Rutile and its applications in earth sciences[J]. EarthScience Reviews, 2010, 102(1/2):1-28.

    Google Scholar

    [2] 刘润泽, 李中, 陈正云, 等.新型工程金属钛的应用[J].钛工业进展, 1998, 1:3-7.

    Google Scholar

    [3] 贾明, 李胜荣, 岳来群, 等.山西代县碾子沟金红石矿床地质特征及经济意义研究[J].地质与勘探, 2006, 42(6):42-46. doi: 10.3969/j.issn.0495-5331.2006.06.009

    CrossRef Google Scholar

    [4] Force E R. Geology of titanium-mineral deposits[J]. Immunology, 1991, 130(2):243-253.

    Google Scholar

    [5] 王永开, 徐永利, 郑有业, 等.柴达木盆地北缘鱼卡-铁石观一带金红石矿床的发现及其地质意义[J].地质通报, 2014, 33(6):900-911. doi: 10.3969/j.issn.1671-2552.2014.06.013

    CrossRef Google Scholar

    [6] 陈鑫, 郑有业, 许荣科, 等.柴北缘超高压变质带折返过程对金红石成矿的制约:来自鱼卡和铁石观西地区石榴子石成分环带的证据[J].地球科学与环境学报, 2016, 38(2):143-159. doi: 10.3969/j.issn.1672-6561.2016.02.003

    CrossRef Google Scholar

    [7] Chen D L, Liu L, Sun Y, et al. Geochemistry and zircon U Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):259-272.

    Google Scholar

    [8] Song S G, Su L, Li X H, et al. Tracing the 850Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China[J]. Precambrian Research, 2010, 183(4):805-816. doi: 10.1016/j.precamres.2010.09.008

    CrossRef Google Scholar

    [9] Zhang G B, Ellis D J, Christy A G, et al. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China[J]. European Journal of Mineralogy, 2009, 21(6):1287-1300.

    Google Scholar

    [10] Ren Y F, Chen D L, Kelsey D E, et al. Petrology and Geochemistry of the lawsonite (pseudomorph)-bearing eclogite in Yuka terrane, North Qaidam UHPM belt:An eclogite facies metamorphosed oceanic slice[J]. Gondwana Research, 2016, 42:220-242.

    Google Scholar

    [11] Zhang L, Chen R X, Zheng Y F, et al. Whole-rock and zircon geochemical distinction between oceanic-and continental-type eclogites in the North Qaidam orogen, northern Tibet[J]. Gondwana Research, 2016, 44:67-88.

    Google Scholar

    [12] 杨经绥, 张建新, 孟繁聪, 等.中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨[J].地学前缘, 2003, 10(3):291-314. doi: 10.3321/j.issn:1005-2321.2003.03.026

    CrossRef Google Scholar

    [13] 王惠初, 袁桂邦, 辛后田, 等.柴达木盆地北缘鱼卡河岩群的地质特征和时代[J].地质通报, 2004, 23(4):314-321. doi: 10.3969/j.issn.1671-2552.2004.04.003

    CrossRef Google Scholar

    [14] 张建新, 孟繁聪, 杨经绥.柴北缘西段榴辉岩相的变质泥质岩:榴辉岩与围岩"原地"关系的证据[J].中国科学:地球科学, 2004, 34(9):825-834.

    Google Scholar

    [15] 张建新, 孟繁聪, 杨经绥.柴北缘鱼卡榴辉岩的p-T演化历史[J].岩石矿物学杂志, 2005, 24(4):245-254. doi: 10.3969/j.issn.1000-6524.2005.04.001

    CrossRef Google Scholar

    [16] 陈丹玲, 孙勇, 刘良, 等.柴北缘鱼卡河榴辉岩的超高压变质年龄:锆石LA-ICP-MS微区定年[J].中国科学:地球科学, 2007, 37(S1):279-287.

    Google Scholar

    [17] 陈丹玲, 孙勇, 刘良.柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J].地学前缘, 2007, 14(1):108-116. doi: 10.3321/j.issn:1005-2321.2007.01.010

    CrossRef Google Scholar

    [18] 陈鑫, 郑有业, 许荣科, 等.柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J].岩石学报, 2018, 34(6):1685-1703.

    Google Scholar

    [19] Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 2014, 129(1):59-84.

    Google Scholar

    [20] 张贵宾, 张立飞, 宋述光.柴北缘超高压变质带:从大洋到大陆的深俯冲过程[J].高校地质学报, 2012, 18(1):28-40. doi: 10.3969/j.issn.1006-7493.2012.01.003

    CrossRef Google Scholar

    [21] 张贵宾, 张立飞, 宁远煜, 等.柴北缘超高压变质带的冷却历史:来自副片麻岩中锆石、金红石的U-Pb年代学和温度信息[J].岩石学报, 2014, 30(10):2835-2842.

    Google Scholar

    [22] 宋述光, 牛耀龄, 张立飞, 等.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例[J].岩石学报, 2009, 25(9):39-49.

    Google Scholar

    [23] 宋述光, 张贵宾, 张聪, 等.大洋俯冲和大陆碰撞的动力学过程:北祁连-柴北缘高压-超高压变质带的岩石学制约[J].科学通报, 2013, 58(23):2240-2245.

    Google Scholar

    [24] 宋述光, 王梦珏, 王潮, 等.大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长[J].中国科学:地球科学, 2015, 5(7):916-940.

    Google Scholar

    [25] 张立飞, 吕增, 张贵宾, 等.大洋型超高压变质带的地质特征及其研究意义:以西南天山、柴北缘超高压变质带为例[J].科学通报, 2008, 53(18):2166-2175. doi: 10.3321/j.issn:0023-074X.2008.18.003

    CrossRef Google Scholar

    [26] 杨经绥, 宋述光, 许志琴, 等.柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物——柯石英[J].地质学报, 2001, 75(2):175-179.

    Google Scholar

    [27] Song S G, Yang J S, Xu Z Q, et al. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China[J]. Journal of Metamorphic Geology, 2003, 21(6):631-644. doi: 10.1046/j.1525-1314.2003.00469.x

    CrossRef Google Scholar

    [28] Song S G, Zhang L F, Niu Y L, et al. Geochronology of diamondbearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau:A record of complex histories from oceanic lithosphere subduction to continental collision[J]. Earth & Planetary Science Letters, 2005, 234(1/2):99-118.

    Google Scholar

    [29] Zhang J X, Meng F C. Coesite in eclogite from the North Qaidam Mountains and its implications[J]. Science Bulletin, 2009, 54(6):1105-1110. doi: 10.1007/s11434-009-0074-x

    CrossRef Google Scholar

    [30] Zhang J X, Mattinson C G, Yu S Y. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China:spatially and temporally extensive UHP metamorphism during continental subduction[J]. Journal of Metamorphic Geology, 2010, 28(9):955-978. doi: 10.1111/jmg.2010.28.issue-9

    CrossRef Google Scholar

    [31] 林成贵, 许荣科, 郑有业, 等.柴北缘鱼卡榴辉岩型金红石矿地质特征及其原岩性质探讨[J].西北地质, 2017, 50(2):142-155. doi: 10.3969/j.issn.1009-6248.2017.02.016

    CrossRef Google Scholar

    [32] Coleman R G, Lee D E, Beatty L B, et al. Eclogites and Eclogites:Their Differences and Similarities[J]. Geological Society of America Bulletin, 1965, 76(5):483-508. doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2

    CrossRef Google Scholar

    [33] Morimoto N. Nomenclature of Pyroxenes[J]. Mineralogy & Petrology, 1988, 39(1):55-76.

    Google Scholar

    [34] Morimoto N. Nomenclature of Pyroxenes[J]. Mineralogy & Petrology, 1988, 39(1):55-76.

    Google Scholar

    [35] Leake B E, Woolley A R, Arps C E S, et al. Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names[J]. The Canadian Mineralogist, 1997, 35:219-247.

    Google Scholar

    [36] 魏春景, 朱文萍.多硅白云母地质压力计的研究进展[J].地质通报, 2007, 26(9):1123-1130. doi: 10.3969/j.issn.1671-2552.2007.09.014

    CrossRef Google Scholar

    [37] 朱文萍, 魏春景.多硅白云母地质压力计的热力学模拟[J].中国科学:地球科学, 2007, 37(8):1014-1019.

    Google Scholar

    [38] 陈丹玲, 孙勇, 刘良, 等.柴北缘鱼卡河榴辉岩的变质演化——石榴石成分环带及矿物反应结构的证据[J].岩石学报, 2005, 21(4):1039-1048.

    Google Scholar

    [39] 张建新, 于胜尧, 孟繁聪.柴达木北缘鱼卡-落凤坡榴辉岩-片麻岩单元的变质变形演化[J].地质通报, 2008, 27(9):1468-1474. doi: 10.3969/j.issn.1671-2552.2008.09.009

    CrossRef Google Scholar

    [40] 黄俊玮, 王守敬, 李洪潮, 等.某榴辉岩型金红石矿粗选试验研究[J].非金属矿, 2017, (1):46-49. doi: 10.3969/j.issn.1000-8098.2017.01.015

    CrossRef Google Scholar

    [41] 孙晓华, 霸慧文, 赵玉卿, 等.榴辉岩型金红石矿综合利用途径研究[J].化工矿物与加工, 2016, (8):37-39.

    Google Scholar

    [42] Zhang L, Chen R X, Zheng Y F, et al. The tectonic transition from oceanic subduction to continental subduction:Zirconological constraints from two types of eclogites in the North Qaidam orogen, northern Tibet[J]. Lithos, 2016, 244:122-139. doi: 10.1016/j.lithos.2015.12.003

    CrossRef Google Scholar

    [43] Lombardo B, Rolfo F, Compagnoni R. Glaucophane and barroisite eclogites from the Upper Kaghan nappe:implications for the metamorphic history of the NW Himalaya[J]. Geological Society London Special Publications, 2000, 170(1):411-430. doi: 10.1144/GSL.SP.2000.170.01.22

    CrossRef Google Scholar

    [44] 刘景波, 国连杰, 吴颍.豫南-鄂北大别山北部高压角闪石榴辉岩的研究[J].地质科学, 1997, 32(4):409-422.

    Google Scholar

    [45] 陈意, 叶凯, 吴春明.榴辉岩常用温压计在应用中应注意的问题[J].岩石学报, 2005, 21(4):1067-1080.

    Google Scholar

    [46] Green T H, Hellman P L. Fe Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnetphengite geothermometer[J]. Lithos, 1982, 15(4):253-266. doi: 10.1016/0024-4937(82)90017-2

    CrossRef Google Scholar

    [47] Powell R. Regression diagnostics and robust regression in geothermometer/geobarometer calibration:the garnetclinopyroxene geothermometer revisited[J]. Journal of Metamorphic Geology, 1985, 3(3):231-243. doi: 10.1111/jmg.1985.3.issue-3

    CrossRef Google Scholar

    [48] Ravna E K. The garnet-clinopyroxene Fe2+-Mg geothermometer:An updated calibration[J]. Journal of Metamorphic Geology, 2000, 18(2):211-219. doi: 10.1046/j.1525-1314.2000.00247.x

    CrossRef Google Scholar

    [49] Chen D L, Liu L, Sun Y, et al. Felsic veins within UHP eclogite at xitieshan in North Qaidam, NW China:Partial melting during exhumation[J]. Lithos, 2012, 136(4):187-200.

    Google Scholar

    [50] Nakamura D, Banno S. Thermodynamic modelling of sodic pyroxene solid-solution and its application in a garnet-omphacitekyanite-coesite geothermobarometer for UHP metamorphic rocks[J]. Contributions to Mineralogy and Petrology, 1997, 130(1):93-102. doi: 10.1007/s004100050352

    CrossRef Google Scholar

    [51] Ravna E J K, Terry M P. Geothermobarometry of UHP and HP eclogites and schists-an evaluation of equilibria among garnetclinopyroxene-kyanite-phengite-coesite/quartz[J]. Journal of Metamorphic Geology, 2004, 22(6):579-592. doi: 10.1111/jmg.2004.22.issue-6

    CrossRef Google Scholar

    [52] Graham C M, Powell R. A garnet hornblende geothermometer:calibration, testing, and application to the Pelona Schist, Southern California[J]. Journal of Metamorphic Geology, 2010, 2(1):13-31.

    Google Scholar

    [53] Carswell D A, O'Brien P J, Wilson R N, et al. Thermobarometry of phengite-bearing eclogites in the Dabie Mountains of central China[J]. Journal of Metamorphic Geology, 1997, 15(2):239-252. doi: 10.1111/j.1525-1314.1997.00014.x

    CrossRef Google Scholar

    [54] Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 1994, 116(4):433-447. doi: 10.1007/BF00310910

    CrossRef Google Scholar

    [55] Massonne H J, Schreyer W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz[J]. Contributions to Mineralogy and Petrology, 1987, 96(2):212-224. doi: 10.1007/BF00375235

    CrossRef Google Scholar

    [56] Kohn M J. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont[J]. American Mineralogist, 1990, 75(1):89-96.

    Google Scholar

    [57] Zhang C, Zhang L F, Roermund H V, et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4):752-767. doi: 10.1016/j.jseaes.2011.04.002

    CrossRef Google Scholar

    [58] Liou J G, Tsujimori T, Zhang R Y, et al. Global UHP Metamorphism and Continental Subduction/Collision:The Himalayan Model[J]. International Geology Review, 2004, 46(1):1-27. doi: 10.2747/0020-6814.46.1.1

    CrossRef Google Scholar

    [59] Zhang J X, Yang J S, Mattinson C G, et al. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China:Petrological and isotopic constraints[J]. Lithos, 2005, 84(1/2):51-76.

    Google Scholar

    [60] Zhang C, Zhang L F, Bader T, et al. Geochemistry and trace element behaviors of eclogite during its exhumation in the Xitieshan terrane, North Qaidam UHP belt, NW China[J]. Journal of Asian Earth Sciences, 2013, 63(sup1):81-97.

    Google Scholar

    [61] 张聪, 田作林, 张立飞, 等.柴北缘锡铁山两类榴辉岩的退变质过程及其对俯冲带折返机制的制约[J].地质通报, 2013, 32(12):2044-2054.

    Google Scholar

    [62] 陈鑫, 许荣科, 郑有业, 等.青海柴北缘UHP变质带铁石观西榴辉岩峰期温度的确定及其地质意义[J].地质通报, 2015, 34(12):2292-2301. doi: 10.3969/j.issn.1671-2552.2015.12.015

    CrossRef Google Scholar

    [63] 宋述光, 张立飞.榴辉岩的两种变质演化轨迹和俯冲大陆地壳的差异折返——以柴北缘都兰超高压地体为例[J].高校地质学报, 2007, 13(3):515-525. doi: 10.3969/j.issn.1006-7493.2007.03.020

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(7)

Article Metrics

Article views(841) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint