2019 Vol. 38, No. 5
Article Contents

GU Pingyang, XU Xueyi, HE Shiping, ZHAO Huibo, ZHUANG Yujun, CHEN Runming, ZHA Fangyong, GUO Yapeng. Ca. 2.5Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis[J]. Geological Bulletin of China, 2019, 38(5): 834-844.
Citation: GU Pingyang, XU Xueyi, HE Shiping, ZHAO Huibo, ZHUANG Yujun, CHEN Runming, ZHA Fangyong, GUO Yapeng. Ca. 2.5Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis[J]. Geological Bulletin of China, 2019, 38(5): 834-844.

Ca. 2.5Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis

  • The newly-discovered granodioritic gneiss is mainly composed of plagioclase, alkali feldspar, quartz, amphibolite and biotite in Ananab area, southeastern Tarim, characterized by high SiO2(>70%), Al2O3(>15%) and Na2O(3.56%~4.15%), and low MgO(0.39%~0.59%), Fe2O3(0.23%~0.36%), FeO(0.76%~1.11%), K2O/Na2O(0.64~0.81)and Mg#(19~27). Meanwhile, the granodioritic gneiss has lower content of ∑ REE, with strong fractionation of LREE/HREE((La/Yb)N=46.27~98.27); the chondrite-normalized REE patterns show right-inclined patterns with obvious positive Eu(δEu=1.57~2.00) anomalies. The rocks are enriched in LILE(such as Rb, Ba and Sr)and depleted in HFSE(such as Nb and Ta); in addition, the values of compatible elements(Cr, Ni)are relatively low. On the basis of the above data, the geochemical analyses indicate that granodioritic gneiss is characteristic of high-Al TTG series and low-HREE TTG. It is therefore held that the rocks might have been formed by partial melting of thickened mafic lower crust under the pressure condition of eclogite facies, with garnet, rutile and amphibole left in the residual magmas. LA-ICP-MS zircon U-Pb dating of granodioritic gneiss from Annanba area of Aksai yielded the formation time of 2555±11Ma, basically consistent with the age of magmatism of southeastern Tarim(2.5~2.6Ga), showing the significant continental crust accretion in late Neoarchean. In addition, the metamorphic ages of ca.2.44Ga and ca.1.96Ga were obtained for granodioritic gneiss, which implies that the basement rocks from southeastern Tarim were superimposed upon and reconstructed by two episodes of tectonic thermal events in Palaeoproterozoic.

  • 加载中
  • [1] Jahn B M, Glikson A Y, Peucat J J, et al. REE geochemistry and isotopic data of Archaean silica volcanics and granitoids from the Pilbara Block, Western Australia:Implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 1981, 45:1633-1652. doi: 10.1016/S0016-7037(81)80002-6

    CrossRef Google Scholar

    [2] Moyen J F, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148:312-336. doi: 10.1016/j.lithos.2012.06.010

    CrossRef Google Scholar

    [3] 张旗, 翟明国.太古宙TTG岩石是什么含义?[J].岩石学报, 2012, 28(11):3446-3456.

    Google Scholar

    [4] 万渝生, 董春艳, 任鹏, 等.华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述[J].岩石学报, 2017, 33(5):1405-1419.

    Google Scholar

    [5] 何登发, 李德生.塔里木盆地构造演化与油气聚集[M].北京:地质出版社, 1996:1-6.

    Google Scholar

    [6] 贾承造.中国塔里木盆地构造特征与油气[M].北京:地质出版社, 1997:29-92.

    Google Scholar

    [7] 张建新, 李怀坤, 孟繁聪, 等.塔里木盆地东南缘(阿尔金山)"变质基底"记录的多期构造热事件:锆石U-Pb年代学的制约[J].岩石学报, 2011, 27(1):23-46.

    Google Scholar

    [8] 刘永顺, 于海峰, 辛后田, 等.阿尔金山地区构造单元划分和前寒武纪重要地质事件[J].地质通报, 2009, 28(10):1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009

    CrossRef Google Scholar

    [9] 辛后田, 赵凤清, 罗照华, 等.塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义[J].地质学报, 2011, 85(12):1977-1993.

    Google Scholar

    [10] 辛后田, 刘永顺, 罗照华, 等.塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生:米兰岩群和TTG片麻岩的地球化学及年代学约束[J].地学前缘, 2013, 20(1):240-259.

    Google Scholar

    [11] 陆松年, 袁桂邦.阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据[J].地质学报, 2003, 77(1):61-68. doi: 10.3321/j.issn:0001-5717.2003.01.008

    CrossRef Google Scholar

    [12] 刘永顺, 辛后田, 周世军, 等.阿尔金山东段拉配泉地区前寒武纪及古生代构造构造演化[M].北京:地质出版社, 2010:84-87.

    Google Scholar

    [13] Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 2008, 160(1/2):94-107.

    Google Scholar

    [14] 校培喜, 高晓峰, 胡云绪, 等.阿尔金-东昆仑西段成矿带地质背景研究[M].北京:地质出版社, 2014:48-51.

    Google Scholar

    [15] Gao S, Liu Xiaoming, Yuan Honglin, et al. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LAICPMS[J]. Geostand Newsl, 2002, 22:181-195.

    Google Scholar

    [16] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [17] Ludwig K R. 3.0-A geochronologycal toolkit for Micro-soft Excel[J]. Berkeley Geo chronology Certer, Special Publication, 2003, (4):1-70.

    Google Scholar

    [18] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process[C]//Sauders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42: 3l3-345.

    Google Scholar

    [19] 万渝生, 刘敦一, 董春艳, 等.高级变质作用对锆石U-Pb同位素体系的影响:胶东栖霞地区变质闪长岩锆石定年[J].地学前缘, 2011, 18(2):17-25.

    Google Scholar

    [20] 朱文斌, 葛荣峰, 吴海林.北阿尔金地区古元古代ca.2.0Ga岩浆-变质事件[J].岩石学报, 2018, 34(4):1175-1190.

    Google Scholar

    [21] Ma M Z, Wan Y S, Santosh M, et al. Decoding multiple tectonothermal events in zircons from single rock samples:SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton[J]. Gondwana Research, 2012, 22(3/4):810-827.

    Google Scholar

    [22] 胡霭琴, 韦刚健.塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J].地质学报, 2006, 80(1):126-134. doi: 10.3321/j.issn:0001-5717.2006.01.014

    CrossRef Google Scholar

    [23] 邓兴梁, 舒良树, 朱文斌, 等.新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄[J].岩石学报, 2008, 24(12):2800-2808.

    Google Scholar

    [24] Long X P, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim Craton, NW China:zircon U-Pb and Hf isotopic constrains[J]. Precambrian Research, 2010, 180(3/4):272-284.

    Google Scholar

    [25] Zhang C L, Li H K, Santosh M, et al. Precambrian evolution and cratonization of the Tarim Block, NW China:Petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences, 2012, 47:5-20. doi: 10.1016/j.jseaes.2011.05.018

    CrossRef Google Scholar

    [26] Zhang J X, Gong J H, Yu S Y, et al. Neoarchean-Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication:Evidence from zircom U-Pb ages and Hf isotopic composition[J]. Precambrian Research, 2013, 235:36-45. doi: 10.1016/j.precamres.2013.05.002

    CrossRef Google Scholar

    [27] 赵燕, 第五春荣, 孙勇, 等.甘肃敦煌水峡口地区前寒武纪岩石的锆石U-Pb年龄、Hf同位素组成及其地质意义[J].岩石学报, 2013, 29(5):1698-1712.

    Google Scholar

    [28] Shu L S, Deng X L, Zhu W B, et al. Precambrian tectonic evolution of the Tarim Block, NW China:New geochronological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences, 2011, 42(5):774-790. doi: 10.1016/j.jseaes.2010.08.018

    CrossRef Google Scholar

    [29] 郭召杰, 张志诚, 刘树文, 等.塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U-Pb年龄新证据[J].岩石学报, 2003, 5(3):537-542.

    Google Scholar

    [30] 董昕, 张泽明, 唐伟.塔里木克拉通北缘的前寒武纪构造热事件——新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J].岩石学报, 2011, 27(1):47-58.

    Google Scholar

    [31] 吴海林, 朱文斌, 舒良树, 等. Columbia超大陆聚合事件在塔里木克拉通北缘的记录[J].高校地质学报, 2012, 18(4):686-700. doi: 10.3969/j.issn.1006-7493.2012.04.009

    CrossRef Google Scholar

    [32] Lei R X, Wu C Z, Chi G X, et al. Petrogenesis of the Paleoproterozoic Xishankou pluton, northern Tarim block, northwest China:implications for assembly of the supercontinent Columbia[J]. International Geology Review, 2012, 54(15):1829-1842. doi: 10.1080/00206814.2012.678045

    CrossRef Google Scholar

    [33] 辛后田, 罗照华, 刘永顺, 等.塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义[J].地学前缘, 2012, 19(6):167-178.

    Google Scholar

    [34] Foley S, Tiepolo M, Vannucci R. Growth of early continental crust controlled by melting of amphibolites in subduction zones[J]. Nature, 2002, 417(6891):837-840. doi: 10.1038/nature00799

    CrossRef Google Scholar

    [35] Condie K C. TTGs and adakites:Are they both slab melts?[J]. Lithos, 2005, 80(1/4):33-44.

    Google Scholar

    [36] Moyen J F. The composite Archaean grey gneisses:Petrological significance and evidence for a non-uniqu tectonic setting for Archaean crustal growth[J]. Lithos, 2011, 123(1/4):21-36.

    Google Scholar

    [37] Moyen J F, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148:312-336. doi: 10.1016/j.lithos.2012.06.010

    CrossRef Google Scholar

    [38] Hoffmann J E, Munker C, Naeraa T, et al. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4157-4178. doi: 10.1016/j.gca.2011.04.027

    CrossRef Google Scholar

    [39] Martin H, Moyen J F. Secular changes in tonalite-trondhjemitegranodiorite composition as markers of the progressive cooling of Earth[J]. Geology, 2002, 30(4):319-322. doi: 10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2

    CrossRef Google Scholar

    [40] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2):1-24.

    Google Scholar

    [41] Smithies R H. The Archaean tonalite-trondhjemite-granodiorite (TTG)series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 2000, 182(1):115-125.

    Google Scholar

    [42] Whalen J B, Percival J A, Mcnicoll V J, et al. A mainly crustal origin for tonalitic granitoid rocks, superior province, Canada:Implications for Late Archean tectonomagmatic processes[J]. Journal of Petrology, 2002, 43(8):1551-1570. doi: 10.1093/petrology/43.8.1551

    CrossRef Google Scholar

    [43] Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa[J]. Chemical Geology, 1999, 160:335-356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [44] Tang J, Zheng Y F, Wu Y B, et al. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane:Constraints on its tectonic affinity in the Sulu orogen[J]. Precambrian Research, 2007, 152(1/2):48-82.

    Google Scholar

    [45] Martin H. Petrogenesis of Archaean teondhjemimes, tonalities and geanodiorites from Eeastern Finland:Major and trace element Geochemistry[J]. Journal of Petrology, 1987, 28:921-953. doi: 10.1093/petrology/28.5.921

    CrossRef Google Scholar

    [46] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432(7019):892-897. doi: 10.1038/nature03162

    CrossRef Google Scholar

    [47] Jiang N, Liu Y S, Zhou W G, et al. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China Craton[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2591-2608. doi: 10.1016/j.gca.2007.02.018

    CrossRef Google Scholar

    [48] Halla J, Hunen J V, Heilimo E, et al. Geochemical and numerical constraints on Neoarchean plate tectonics[J]. Precambrian Research, 2009, 174(1/2):155-162.

    Google Scholar

    辜平阳,董增产,陈锐明,等. 青海阿尔金 1∶5万打柴沟等 6幅区域地质调查报告. 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(737) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint