2019 Vol. 38, No. 1
Article Contents

LU Kuan, DU Shiyan, ZHANG Ruoxi, ZOU Yan, CAI Yitao, YANG Shuiyuan. Mineral chemistry, geochemistry and geological significance of Early Cretaceous mafic rock in Longyou area, Gan-Hang belt[J]. Geological Bulletin of China, 2019, 38(1): 163-176.
Citation: LU Kuan, DU Shiyan, ZHANG Ruoxi, ZOU Yan, CAI Yitao, YANG Shuiyuan. Mineral chemistry, geochemistry and geological significance of Early Cretaceous mafic rock in Longyou area, Gan-Hang belt[J]. Geological Bulletin of China, 2019, 38(1): 163-176.

Mineral chemistry, geochemistry and geological significance of Early Cretaceous mafic rock in Longyou area, Gan-Hang belt

More Information
  • There have been reports of diamonds found in the mafic rocks of Longyou, Zhejiang Province. However, the tectonic setting and host rock characteristics still lack detailed studies. In this paper, the authors carried out a detailed study of petrology, major and trace elements, Sr-Nd isotopic compositions and mineral chemistry for the Longyou mafic rocks in an attempt to unravel the petrogenesis, magma evolution and tectonic setting during Late Mesozoic period. Longyou mafic rocks can be classified as olivine gabbro. Isotope characteristics indicate that the olivine gabbro was derived from a deep mantle source. The major and trace elements show that they mainly underwent fractional crystallization of olivine and pyroxene, without any obvious crustal contamination. Olivine grains show a core-rim structure with the core being Mg-rich and Fe-depleted and Fo values being 90.1~91.8, which indicates that the original magma was an asthenospheric mantle. In contrast, the rim of the olivine grains is Fe-rich and Mg-depleted with Fo values being 77.4~85.3. The remarked difference in Fo values for the core and rim may indicate that the original olivine was replaced by mantle melt/fluid. Most pyroxene xenocrystals belong to diopside, and a small amount of aegirite augite is developed at the edge of some diopside xenocrystals. The diopside xenocrystal generally has a core-mantle-rim structure, exhibiting a decrease in SiO2 and increase in TiO2, Al2O3 and temperature of magmatic emplacement from the core to rim. The authors hold that this corerim trend may indicate that the pyroxenes were metasomatized by later higher temperature mantle melt/fluid. It is argued that the Longyou olivine gabbro was formed during the roll-back of the Paleo-Pacific plate along the deep faults of the Gan-Hang tectonic belt. The asthenospheric mantle melts moved upwards along these deep faults and the magma responsible for the Longyou olivine gabbro experienced the fractional crystallization between olivine and pyroxene with very low degree of or without crustal contamination. Furthermore, it is also suggested that the Longyou olivine gabbro experienced a metasomatism of higher temperature mantle melt/fluids.

  • 加载中
  • [1] 刘瑞.中国东部碱性基性岩与金刚石矿床成矿机制研究[J].长春工程学院学报(自然科学版), 2003, 4(4):1-4. doi: 10.3969/j.issn.1009-8984.2003.04.001

    CrossRef Google Scholar

    [2] 蔡逸涛, 陈国光, 张洁, 等.安徽栏杆地区橄榄辉长岩地球化学特征及其与金刚石成矿的关系[J].资源调查与环境, 2014, 35(4):245-253. doi: 10.3969/j.issn.1671-4814.2014.04.002

    CrossRef Google Scholar

    [3] 秦正永, 林晓辉.浙江龙游县虎头山是否存在"金伯利岩"[J].华南地质与矿产, 2001, (2):57-62. doi: 10.3969/j.issn.1007-3701.2001.02.009

    CrossRef Google Scholar

    [4] 高林志, 张恒, 丁孝忠, 等.江山-绍兴断裂带构造格局的新元古代SHRIMP锆石U-Pb年龄证据[J].地质通报, 2014, 33(6):763-775. doi: 10.3969/j.issn.1671-2552.2014.06.001

    CrossRef Google Scholar

    [5] Yu X Q, Wu G G, Shu L S, et al. The Cretaceous tectonism of the Gan-Hang Tectonic Belt, southeastern China[J]. Earth Science Frontiers, 2006, 13(3):31-44.

    Google Scholar

    [6] Gilder S A, Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Journal of Geophysical Research, 1996, 101(B7):16137-16154. doi: 10.1029/96JB00662

    CrossRef Google Scholar

    [7] Goodell P C, Gilder S, Fang X. A preliminary description of the Can-Hang failed rift, southeastern China[J]. Tectonophysics, 1991, (197):245-255.

    Google Scholar

    [8] 邓家瑞, 张志平.赣杭构造带前寒武纪构造格局的探讨[J].铀矿地质, 1997, 13(6):321-326.

    Google Scholar

    [9] 邓家瑞, 张志平.赣杭构造带区域大地构造背景的探讨[J].铀矿地质, 1999, 15(2):8-13.

    Google Scholar

    [10] 邓家瑞, 张志平.浙西-赣东北前寒武纪构造格局初探[J].华东地质学院学报, 1989, 12(1):18-25.

    Google Scholar

    [11] 张星蒲.赣杭构造带中生代火山盆地的形成和演化[J].铀矿地质, 1999, 15(1):19-24.

    Google Scholar

    [12] 冯少南.东吴运动的新认识[J].现代地质, 1991, 5(4):378-384.

    Google Scholar

    [13] 何斌, 徐义刚, 王雅玫, 等.东吴运动性质的厘定及其时空演变规律[J].地球科学, 2005, 30(1):89-96.

    Google Scholar

    [14] 胡世忠.关于龙潭组下界及东吴运动位置等问题的商榷[J].地层学杂志, 1979, 3(4):251-257.

    Google Scholar

    [15] 余心起, 吴淦国, 舒良树, 等.白垩纪时期赣杭构造带的伸展作用[J].地学前缘, 2006, 13(3):31-43. doi: 10.3321/j.issn:1005-2321.2006.03.006

    CrossRef Google Scholar

    [16] Jiang Y H, Ling H F, Jiang S Y, et al. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China[J]. Journal of Petrology, 2005, 46(6):1121-1154. doi: 10.1093/petrology/egi012

    CrossRef Google Scholar

    [17] Yang S Y, Jiang S Y, Jiang Y H, et al. Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China[J]. Science China:Earth Sciences, 2010, 53(10):1411-1426. doi: 10.1007/s11430-010-4058-0

    CrossRef Google Scholar

    [18] Wong J, Sun M, Xing G F, et al. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite:Extension at 125-100Ma and its tectonic significance for South China[J]. Lithos, 2009, 112(3/4):289-305.

    Google Scholar

    [19] Jiang Y H, Zhao P, Zhou Q, et al. Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos, 2011, 121(1/4):55-73.

    Google Scholar

    [20] Sun F J, Xu X S, Zou H B, et al. Petrogenesis and magmatic evolution of~130Ma A-type granites in Southeast China[J]. Journal of Asian Earth Sciences, 2015, 98:209-224. doi: 10.1016/j.jseaes.2014.11.018

    CrossRef Google Scholar

    [21] Yang S Y, Jiang S Y, Zhao K D, et al. Geochronology, geochemistry and tectonic significance of two Early Cretaceous Atype granites in the Gan-Hang Belt, Southeast China[J]. Lithos, 2012, 150:155-170. doi: 10.1016/j.lithos.2012.01.028

    CrossRef Google Scholar

    [22] Wang H Z, Chen P R, Sun L Q, et al. Magma mixing and crustmantle interaction in Southeast China during the Early Cretaceous:Evidence from the Furongshan granite porphyry and mafic microgranular enclaves[J]. Journal of Asian Earth Sciences, 2015, 111:72-87. doi: 10.1016/j.jseaes.2015.08.010

    CrossRef Google Scholar

    [23] Yang S Y, Jiang S Y, Zhao K D, et al. Petrogenesis and tectonic significance of Early Cretaceous high-Zr rhyolite in the Dazhou uranium district, Gan-Hang Belt, Southeast China[J]. Journal of Asian Earth Sciences, 2013, 74:303-315. doi: 10.1016/j.jseaes.2012.12.024

    CrossRef Google Scholar

    [24] Liu L, Qiu J S, Li Z. Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang Province, Southeast China:Implications for magma mixing and crust-mantle interaction[J]. Lithos, 2013, 160/161:145-163. doi: 10.1016/j.lithos.2012.12.005

    CrossRef Google Scholar

    [25] Qi Y Q, Hu R Z. Geochemical and Sr-Nd-Pb isotopic compositions of Mesozoic mafic dikes from the Gan-Hang tectonic belt, South China[J]. International Geology Review, 2012, 54(8):920-939. doi: 10.1080/00206814.2011.588820

    CrossRef Google Scholar

    [26] Qi Y Q, Hu R Z. Petrogenesis and geodynamic setting of Early Cretaceous mafic-ultramafic intrusions, South China:A case study from the Gan-Hang tectonic belt[J]. Lithos, 2016, 258/259:149-162. doi: 10.1016/j.lithos.2016.04.027

    CrossRef Google Scholar

    [27] Zhang R X, Yang S Y. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis[J]. Microscopy and Microanalysis, 2016, 22(6):1374-1380. doi: 10.1017/S143192761601182X

    CrossRef Google Scholar

    [28] 郑巧荣.由电子探针分析值计算[J].矿物学报, 1983, (1):55-62. doi: 10.3321/j.issn:1000-4734.1983.01.009

    CrossRef Google Scholar

    [29] 高剑峰, 陆建军, 赖鸣远, 等.岩石样品中微量元素的高分辨率等离子质谱分析[J].南京大学学报(自然科学版), 2003, 39(6):844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014

    CrossRef Google Scholar

    [30] 濮巍, 高剑峰, 赵葵东, 等.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd[J].地球学报, 2005, 26:54-54. doi: 10.3321/j.issn:1006-3021.2005.z1.020

    CrossRef Google Scholar

    [31] Birck J L. Precision K-Rb-Sr isotopic analysis:Application to RbSr chronology[J]. Chemical Geology, 1986, 56:73-83. doi: 10.1016/0009-2541(86)90111-7

    CrossRef Google Scholar

    [32] Morimoto N. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 1988, 52:535-550.

    Google Scholar

    [33] Boynton W V. Cosmochemistry of the rare earth elements Meteorites studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 1984.

    Google Scholar

    [34] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120:223-253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    [35] Winchester J A, Floyd P A. Geochemical magma type discrimination:application to altered and metamorphosed igneous rocks[J]. Earth Planet. Sci. Lett., 1976, 28(3):459-469. doi: 10.1016/0012-821X(76)90207-7

    CrossRef Google Scholar

    [36] Allegre C. J, Hart S R. Trace elements in igneous petrology[J]. Chemical Geology, 1979, 25:355-358.

    Google Scholar

    [37] Treuil M, Varet J. Criteres volcanologiques, petrologiques et geochimiques de lagenese et de la differenciation des magmas basaltiques; exemple de l'Afar[J]. Bulletin de la Societe Geologique de France. 1973, S7-XV(5/6):506-540.

    Google Scholar

    [38] Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11):1959-1975. doi: 10.1016/S0016-7037(98)00121-5

    CrossRef Google Scholar

    [39] Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust?[J]. Earth and Planetary Science Letters, 1998, 161:101-117. doi: 10.1016/S0012-821X(98)00140-X

    CrossRef Google Scholar

    [40] Kato T, Enami M, Zhai M. Ultra-high-pressure (UHP) marble and eclogite in the Su-Lu UHP terrane, eastern China[J]. Journal of Metamorphic Geology, 1997, 15:169-182. doi: 10.1111/j.1525-1314.1997.00013.x

    CrossRef Google Scholar

    [41] Zhang R Y, Hirajima T, Banno S, et al. Petrology of ultrahighpressure rocks from the southern Su-Lu region, eastern China[J]. Journal of Metamorphic Geology, 1995, 13(6):659-675. doi: 10.1111/jmg.1995.13.issue-6

    CrossRef Google Scholar

    [42] Thompson R N. Some high-pressure pyroxenes[J]. Mineralogical Magazine, 1974, 39:768-787. doi: 10.1180/minmag.1974.039.307.04

    CrossRef Google Scholar

    [43] 刘勇, 李廷栋, 肖庆辉等.湘南宁远地区碱性玄武岩形成时代的新证据:锆石LA-ICP-MS U-Pb定年[J].地质通报, 2010, 29(6):833-841. doi: 10.3969/j.issn.1671-2552.2010.06.005

    CrossRef Google Scholar

    [44] Leterrier J, Maury R C, Thonon P, et al. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series[J]. Earth and Planetary Science Letters, 1982, 59:139-154. doi: 10.1016/0012-821X(82)90122-4

    CrossRef Google Scholar

    [45] 张兴洲, 张元厚.黑龙江群夹层状大理岩中的霓辉石和镁钠闪石[J].黑龙江地质, 1991, 2(4):35-40.

    Google Scholar

    [46] 祁生胜, 王毅智, 范桂兰, 等.唐古拉山北坡中新世霓辉石正长岩的地球化学特征、时代及构造意义[J].地质通报, 2007, 26(12):1678-1685. doi: 10.3969/j.issn.1671-2552.2007.12.022

    CrossRef Google Scholar

    [47] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the NbZr-Y diagram[J]. Chemical Geology, 1986, 56(3/4):207-218.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(1521) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint