2020 Vol. 39, No. 1
Article Contents

LI Chunlin, WANG Zongxiu, TAO Tao. Zircon U-Pb dating of Bolongke A-type granite on the margin of northern North China Plate and its geological significance[J]. Geological Bulletin of China, 2020, 39(1): 40-50.
Citation: LI Chunlin, WANG Zongxiu, TAO Tao. Zircon U-Pb dating of Bolongke A-type granite on the margin of northern North China Plate and its geological significance[J]. Geological Bulletin of China, 2020, 39(1): 40-50.

Zircon U-Pb dating of Bolongke A-type granite on the margin of northern North China Plate and its geological significance

More Information
  • Bolongke granite, emplaced in the Upper Jurassic volcanic strata, is located on the north margin of the North China Craton (NCC).Detailed petrographical observation reveals that the granite occurs in the forms of euhedral and subeuhedral crystals and exhibits mymekitic and pegmatitic texture and massive structure.Sencitization and argillation exist in part of plagioclases caused by weathering. The LA-ICP-MS analysis of zircons yielded empkcement ages of 134.0±1.8Ma(MSWD=1.8) and 134.9±4.1Ma(MSWD=2.0), indicating that the Bolongke granite was fomied in the Early Cretaceous.A geochemical study of the intrusion suggests that it belongs to high-K calc-alkaline series and is characterized by depletion of Ba, Sr and enrichment of such elements as Rb, Th, Pb and Hf, with obviously negative Eu anomalies. To sum up, the intrusion shows the charactejstics of A-type granite. Tectonic discrimination diagrams indicate that Bolongke granite was fomed in an anorogenic extension environment. Combined with the achievements obtained by previous researchers, the authors tentatively hold that the emplacement of Bolongke granite belonged to the Mesozoic magmatic events in the North China Craton and was produced by lithospheric thinning.

  • 加载中
  • [1] Loiselle M C, Wones D R.Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 1979, 11:468.

    Google Scholar

    [2] Eby G N.Chemical subdivision of the A-type granitoids:Petrogenesis and tectonic implications[J]. Geology, 1992, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [3] Pitcher W S.The nature and origin of granite[M]. Blackie:Academic and Professional, 1993:1-316.

    Google Scholar

    [4] King P L, White A J R, Chappell B W, et al.Characterization and origin of aluminous A-type granites form the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [5] King P L, Chappell B W, Allen C M, et al.Are A-type granites the high-temperature felsic granites?Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences, 2001, 48(4):501-514. doi: 10.1046/j.1440-0952.2001.00881.x

    CrossRef Google Scholar

    [6] Feio G R L, Dall'Agnol R, Dantas E L, et al.Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton:A-type or hydrated charnockitic granites?[J]. Lithos, 2012, 151(151):57-73.

    Google Scholar

    [7] Breiter K, Lamarão C N, Borges R M K, et al.Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites[J]. Lithos, 2014, 192-195:208-225. doi: 10.1016/j.lithos.2014.02.004

    CrossRef Google Scholar

    [8] Moreno J A, Molina J F, Montero P, et al.Unraveling sources of A-type magmas in juvenile continental crust:Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt[J]. Lithos, 2014, 192/195:56-85. doi: 10.1016/j.lithos.2014.01.010

    CrossRef Google Scholar

    [9] Bonin B.A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97:1-29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    [10] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [11] Chappell B W, White A J R.I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2):1-26.

    Google Scholar

    [12] Whalen J B, Currie K L, Chappell B W.A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [13] Clemens J D.Granites and granitic magmas:strange phenomena and new perspectives on some old problems[J]. Proceedings of the Geologists' Association, 2005, 116:9-16.

    Google Scholar

    [14] Douce P, Alberto E.Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8):743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    CrossRef Google Scholar

    [15] 邓晋福.中国大陆根-柱构造:大陆动力学的钥匙[M].北京:地质出版社, 1996.

    Google Scholar

    [16] 翟明国, 樊祺诚.华北克拉通中生代下地壳置换:非造山过程的壳幔交换[J].岩石学报, 2002, 18(1):1-18.

    Google Scholar

    [17] 刘俊来, 关会梅, 纪沫, 等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束[J].自然科学进展, 2006, 16(1):21-26. doi: 10.3321/j.issn:1002-008X.2006.01.004

    CrossRef Google Scholar

    [18] 翟明国, 朱日祥, 刘建明, 等.华北东部中生代构造体制转折的关键时限[J].中国科学(D辑), 2003, 33(10):913-920.

    Google Scholar

    [19] 翟明国.华北克拉通构造演化[J].地质力学学报, 2019, 25(5):722-745.

    Google Scholar

    [20] 嵇少丞, 王茜, 许志琴.华北克拉通破坏与岩石圈减薄[J].地质学报, 2008, 82(2):174-193. doi: 10.3321/j.issn:0001-5717.2008.02.005

    CrossRef Google Scholar

    [21] 刘红涛, 翟明国, 刘建明, 等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报, 2002, 18(4):433-448.

    Google Scholar

    [22] 刘伟, 潘小菲, 谢烈文, 等.大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式[J].岩石学报, 2007, 23(2):441-460.

    Google Scholar

    [23] 韩振哲, 王洪杰, 李中会, 等.内蒙古东北部阿龙山地区早白垩世A型花岗岩特征及其意义[J].华南地质与矿产, 2009, (4):1-9. doi: 10.3969/j.issn.1007-3701.2009.04.001

    CrossRef Google Scholar

    [24] 孙金凤, 杨进辉.华北东部早白垩世A型花岗岩与克拉通破坏[J].地球科学(中国地质大学学报), 2009, 34(1):137-147.

    Google Scholar

    [25] 周振华, 吕林素, 杨永军, 等.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约[J].岩石学报, 2010, 26(12):3521-3537.

    Google Scholar

    [26] 解洪晶, 武广, 朱明田, 等.内蒙古道郎呼都格地区A型花岗岩年代学、地球化学及地质意义[J].岩石学报, 2012, 28(2):483-494.

    Google Scholar

    [27] Wu F, Sun D, Li H, et al.A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2):143-173.

    Google Scholar

    [28] Khain E V, Bibikova E V, Kröner A, et al.The most ancient ophiolite of the Central Asian fold belt:U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters, 2002, 199(3/4):311-325.

    Google Scholar

    [29] Xiao W, Zhang L, Qin K, et al.Paleozoic accretionary and collisional tectonics of the eastern Tianshan(China):implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304:370-395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [30] Windley B F, Alexeiev D, Xiao W, et al.Tectonic models for accretion of the Central Asian Orogenic[J]. Journal of the Geological Society, 2007(164):31-47.

    Google Scholar

    [31] Xiao W J, Windley B F, Hao J, et al.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6):1069.

    Google Scholar

    [32] 李锦轶, 高立明, 孙桂华, 等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报, 2007, 23(3):565-582.

    Google Scholar

    [33] 李益龙, 周汉文, 钟增球, 等.华北与西伯利亚板块的对接过程:来自西拉木伦缝合带变形花岗岩锆石LA-ICP-MS U-Pb年龄证据[J].地球科学(中国地质大学学报), 2009, 32(6):931-938.

    Google Scholar

    [34] 张琪琪, 张拴宏.华北地块北缘泥盆纪岩浆活动及其构造背景[J].地质力学学报, 2019, 25(1):125-138.

    Google Scholar

    [35] 高立明.西拉木伦河断裂带基本特征及其动力学意义[D].中国地质科学院硕士学位论文, 2004.

    Google Scholar

    [36] 崔盛芹, 马寅生, 吴珍汉, 等.燕山地区中新生代陆内造山作用[M].北京:地质出版社, 2006.

    Google Scholar

    [37] 邵济安, 张履桥, 贾文, 等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨[J].岩石学报, 2001, 17(2):283-290.

    Google Scholar

    [38] 徐备, 刘树文, 王长秋, 等.内蒙古西北部宝音图群Sm-Nd和Rb-Sr地质年代学研究[J].地质论评, 2000, 46(1):86-90. doi: 10.3321/j.issn:0371-5736.2000.01.012

    CrossRef Google Scholar

    [39] Maitre R W L.A Classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Blackwell, 1989.

    Google Scholar

    [40] Peccerillo A, Taylor S R.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81.

    Google Scholar

    [41] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [42] Boynton W V.Geochemistry of the rare earth elements:Meteorite studies[M]. Amsterdam:Elservier, 1989:63-144.

    Google Scholar

    [43] Miller C F, McDowell S M, Mapes R W.Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6):529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

    CrossRef Google Scholar

    [44] 王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4):297-315. doi: 10.3969/j.issn.1000-6524.2000.04.002

    CrossRef Google Scholar

    [45] Turner S P, Foden J D, Morrison R S.Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2):151-179.

    Google Scholar

    [46] Mushkin A, Navon O, Halicz L, et al.The Petrogenesis of A-type Magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5):815-832. doi: 10.1093/petrology/44.5.815

    CrossRef Google Scholar

    [47] Harris C, Marsh J S, Milner S C.Petrology of the Alkaline Core of the Messum Igneous Complex, Namibia:Evidence for the Progressively Decreasing Effect of Crustal Contamination[J]. Journal of Petrology, 1999, 40(9):1377-1397. doi: 10.1093/petroj/40.9.1377

    CrossRef Google Scholar

    [48] Mingram B, Trumbull R B, Littman S, et al.A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia:evidence for mixing of crust and mantle-derived components[J]. Lithos, 2000, 54(1/2):1-22.

    Google Scholar

    [49] Clemens J D, Holloway J R, White A J R.Origin of an A-type granite; experimental constraints[J]. American Mineralogist, 1986, 71(3):317-324.

    Google Scholar

    [50] Skjerlie K P, Johnston A D.Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss:Implications for the generation of A-type granites[J]. Geology, 1992, 20(3):263-266. doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

    CrossRef Google Scholar

    [51] Creaser R A, Price R C, Wormald R J.A-type granites revisited:Assessment of a residual-source model[J]. Geology, 1991, 19(2):163-166.

    Google Scholar

    [52] Rapp R P, Watson E B.Dehydration Melting of Metabasalt at 8~32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [53] Sylvester P J.Post-Collisional Alkaline Granites[J]. Journal of Geology, 1989, 97(3):261-280. doi: 10.1086/629302

    CrossRef Google Scholar

    [54] Bonin B.From orogenic to anorogenic settings:Evolution of granitoid suites after a major orogenesis[J]. Geological Journal, 1990, 25(3/4):261-270.

    Google Scholar

    [55] Hong D, Wang S, Han B, et al.Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(1):13-27. doi: 10.1016/0743-9547(96)00002-5

    CrossRef Google Scholar

    [56] Batchelor R A, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1):43-55.

    Google Scholar

    [57] Davis G A, Darby B J, Zheng Y, et al.Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geology, 2002, 30(11):1003-1006. doi: 10.1130/0091-7613(2002)030<1003:GATEOA>2.0.CO;2

    CrossRef Google Scholar

    [58] 王新社, 郑亚东, 张进江, 等.呼和浩特变质核杂岩伸展运动学特征及剪切作用类型[J].地质通报, 2002, 21(4/5):238-245.

    Google Scholar

    [59] 王新社, 郑亚东.楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束[J].地质论评, 2005, 51(5):576-582.

    Google Scholar

    [60] 李益龙, 周汉文, 钟增球, 等.华北-西伯利亚板块对接带早白垩纪的裂解:来自西拉木伦断裂带中性岩墙群的锆石U-Pb年龄及地球化学证据[J].地球科学, 2010, 35(6):921-932.

    Google Scholar

    [61] 刘燊, 胡瑞忠, 冯光英, 等.华北克拉通中生代以来基性岩墙群的分布及研究意义[J].地质通报, 2010, 29(2/3):259-267.

    Google Scholar

    [62] Xue F, Santosh M, Tsunogae T, et al.Geochemical and isotopic imprints of early cretaceous mafic and felsic dyke suites track lithosphere-asthenosphere interaction and craton destruction in the North China Craton[J]. Lithos, 2019, 326/327:174-199.

    Google Scholar

    [63] Guo P, Niu Y, Sun P, et al.The Early Cretaceous bimodal volcanic suite from the Yinshan Block, western North China Craton:Origin, process and geological significance[J]. Journal of Asian Earth Sciences, 2018, 160:348-364. doi: 10.1016/j.jseaes.2017.10.023

    CrossRef Google Scholar

    [64] Li S, Zhao G, Dai L, et al.Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47:64-79. doi: 10.1016/j.jseaes.2011.06.008

    CrossRef Google Scholar

    [65] Wang T, Zheng Y, Li T, et al.Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth[J]. Journal of Asian Earth Sciences, 2004, 23(5):715-729. doi: 10.1016/S1367-9120(03)00133-0

    CrossRef Google Scholar

    [66] 李毅, 吴泰然, 罗红玲, 等.内蒙古四子王旗早白垩世钾玄岩的地球化学特征及其形成构造环境[J].岩石学报, 2006, 22(11):2791-2800.

    Google Scholar

    [67] Xu Y, Huang X, Ma J, et al.Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong[J]. Contributions to Mineralogy & Petrology, 2004, 147(6):750-767.

    Google Scholar

    [68] Zheng J, Griffin W L, O Reilly S Y, et al.Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica Et Cosmochimica Acta, 2007, 71(21):5203-5225. doi: 10.1016/j.gca.2007.07.028

    CrossRef Google Scholar

    [69] Zhang H.Transformation of lithospheric mantle through peridotite-melt reaction:A case of Sino-Korean craton[J]. Earth and Planetary Science Letters, 2005, 237(3):768-780.

    Google Scholar

    [70] Zhang H, Nakamura E, Sun M, et al.Transformation of Subcontinental Lithospheric Mantle through Peridotite-Melt Reaction:Evidence from a Highly Fertile Mantle Xenolith from the North China Craton[J]. International Geology Review, 2007, 49(7):658-679. doi: 10.2747/0020-6814.49.7.658

    CrossRef Google Scholar

    [71] Wu F, Lin J, Wilde S A, et al.Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, (233):103-119.

    Google Scholar

    [72] 邓晋福, 苏尚国, 刘翠, 等.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉, 还是热侵蚀和化学交代?[J].地学前缘, 2006, 13(2):105-119. doi: 10.3321/j.issn:1005-2321.2006.02.009

    CrossRef Google Scholar

    [73] Liu J, Cai R, Pearson D G, et al.Thinning and destruction of the lithospheric mantle root beneath the North China Craton:A review[J]. Earth-Science Reviews, 2019, 196:102873. doi: 10.1016/j.earscirev.2019.05.017

    CrossRef Google Scholar

    [74] 邓晋福, 苏尚国, 赵海玲, 等.华北地区燕山期岩石圈减薄的深部过程[J].地学前缘, 2003, 3:42-51.

    Google Scholar

    内蒙古自治区有色地质勘查局.赤峰地区1: 50000区域矿产资源图.2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(1000) PDF downloads(7) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint