2020 Vol. 39, No. 2-3
Article Contents

WU Haoran, XIE Yuling, WANG Ying. Mineralogical characteristics and Pb isotopes of Gongdongchong lead-zinc polymetallic deposit, Dabie orogenic belt[J]. Geological Bulletin of China, 2020, 39(2-3): 338-352.
Citation: WU Haoran, XIE Yuling, WANG Ying. Mineralogical characteristics and Pb isotopes of Gongdongchong lead-zinc polymetallic deposit, Dabie orogenic belt[J]. Geological Bulletin of China, 2020, 39(2-3): 338-352.

Mineralogical characteristics and Pb isotopes of Gongdongchong lead-zinc polymetallic deposit, Dabie orogenic belt

More Information
  • The Gongdongchong Pb-Zn deposit, located on the north border of Dabie orogenic belt, Jinzhai County, Anhui Province, is a representative hydrothermal breccia-type lead-zinc polymetallic deposit in the Dabie Mountain region.The results of microscopic identification, SEM/EDS and EPMA of ore minerals indicate that silver exists mainly in the form of independent silver-bearing minerals, such as polybasite and Ag-tetrahedrite, which occur mainly in galena as micro-inclusions in the granular shape, columnar shape, lath shape and irregular form.The data 206Pb/204Pb (17.804~17.947), 207Pb/204Pb (15.567~15.669) and 208Pb/204Pb (38.496~38.886) of sulfides suggest that the ore-forming metals were derived from crust-mantle mixed source, being closely related to the Yanshanian magmatic activity.Metal ions such as Pb, Zn and Ag which were dissolved from magma migrate as chlorine-complex in the early stage of mineralization.As the temperature, salinity and fO2 dropped and pH rose, Pb, Zn-chloride-complex was decomposed to form a lead-zinc breccia ore due to the decrease in stability in the ore-forming hydrothermal solution, while the Ag-ions formed sulfur-hydrogen-complex.When the temperature fell, the Ag-sulfur-hydrogen-complex were decomposed and precipitated.Meanwhile, Ag+ combined with Sb3+, As3+, and Cu+ to form a large amount of independent silver-bearing minerals.

  • 加载中
  • [1] Hacker B R, Ratschbacher L W, Ireland L, et al.U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J].Earth and Planetary Science Letters, 1998, 161(1/4):215-230.

    Google Scholar

    [2] 彭智, 陆三明, 徐晓春.北淮阳构造带东段金-多金属矿床区域成矿规律[J].合肥工业大学学报(自然科学版), 2005, 28(4):364-368.

    Google Scholar

    [3] 杨泽强, 万守全, 马宏卫, 等.河南商城县汤家坪钼矿床地球化学特征与成矿模式[J].地质学报, 2008, 82(6):788-794.

    Google Scholar

    [4] 任志, 周涛发, 袁峰, 等.安徽沙坪沟钼矿区中酸性侵入岩期次研究——年代学及岩石化学约束[J].岩石学报, 2014, 30(4):1097-1116.

    Google Scholar

    [5] Mi M, Chen Y J, Yang Y F, et al.Geochronology and geochemistry of the giant Qian'echong Mo deposit, Dabie Shan, eastern China:Implications for ore genesis and tectonic setting[J].Gondwana Research, 2015, 27:1217-1235.

    Google Scholar

    [6] 谢玉玲, 李腊梅, 郭翔, 等.安徽西冲钼矿床细粒花岗岩的岩石定年、岩石化学及与成矿的关系研究[J].岩石学报, 2015, 31(7):1929-1942.

    Google Scholar

    [7] Chen Y J, Wang P, Li N, et al.The collision-type porphyry Mo deposits in Dabie Shan, China[J].Ore Geology Reviews, 2017, 81:405-430.

    Google Scholar

    [8] 吴皓然, 谢玉玲, 王爱国, 等.安徽汞洞冲角砾岩型铅锌矿床成矿作用过程:来自矿床地质、流体包裹体和C、H、O、S同位素的证据[J].中国有色金属学报, 2018, 28(7):1418-1441.

    Google Scholar

    [9] 李曙光, 李秋立, 侯振辉, 等.大别山超高压变质岩的冷却史及折返机制[J].岩石学报, 2005, 21(4):1117-1124.

    Google Scholar

    [10] 李厚民, 陈毓川, 叶会寿, 等.东秦岭-大别地区中生代与岩浆活动有关钼(钨)金银铅锌矿床成矿系列[J].地质学报, 2008, 82(11):1468-1477.

    Google Scholar

    [11] 陈伟, 徐兆文, 李红超, 等.河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示[J].地质学报, 2013, 87(10):1510-1524.

    Google Scholar

    [12] Wu Y B, Zheng Y F.Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China[J].Gondwana Research, 2013, 23(4):1402-1428.

    Google Scholar

    [13] Wang P, Chen Y J, Fu B, et al.Fluid inclusion and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan, China:a case study of porphyry systems in continental collision orogens[J].International Journal of Earth Sciences, 2014, 103:77-97.

    Google Scholar

    [14] Wang Q, Wyman D A, Xu J, et al.Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:implications for partial melting and delamination of thickened lower crust[J].Geochimica et Cosmochimica Acta, 2007, 71(10):2609-2636

    Google Scholar

    [15] Zhao Z F, Zheng Y F, Wei C S, et al.Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China[J].Chemical Geology, 2008, 253:222-242.

    Google Scholar

    [16] Xu H J, Ma C Q, Ye K.Early Cretaceous granitoids and their implications for Collapse of the Dabie orogen, eastern China:SHRIMP zircon U-Pb dating and geochemistry[J].Chemical Geology, 2007, 240(3/4):238-259.

    Google Scholar

    [17] Xu H J, Ma C Q, Zhang J F, et al.Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China:Petrogenesis and implications for destruction of the over-thickened lower continental crust[J].Gondwana Research, 2012, 23(1):190-207.

    Google Scholar

    [18] 杜建国.大别造山带中生代岩浆作用与成矿地球化学研究[D].合肥工业大学博士学位论文, 2000: 14-36.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y361205

    Google Scholar

    [19] 李占轲, 李建威, 陈蕾, 等.河南洛宁沙沟Ag-Pb-Zn矿床银的赋存状态及成矿机理[J].地球科学, 2010, 35(4):621-636.

    Google Scholar

    [20] 卢燃, 毛景文, 高建京, 等.江西冷水坑矿田下鲍Ag-Pb-Zn矿床地质特征及银的赋存状态研究[J].岩石学报, 2012, 28(1):105-121.

    Google Scholar

    [21] 唐燕文, 谢玉玲, 李应栩, 等.浙江安吉多金属矿床金银赋存状态及银矿物特征研究[J].岩石矿物学杂志, 2012, 31(3):393-402.

    Google Scholar

    [22] Faure G, Mensing T M.Isotopes: Principles and Applications[M].John Wiley and Sons, New York, 2005: 256-283.

    Google Scholar

    [23] 王静纯, 简晓忠.银的赋存特征研究[J].有色金属矿产与勘查, 1996, (2):89-93.

    Google Scholar

    [24] 王璞, 潘兆橹, 翁玲宝.系统矿物学(下)[M].北京:地质出版社, 1982:1-200.

    Google Scholar

    [25] Lueth V W, Megaw P K M, Pingiore N E.Systematic Variation in Galena solid-Solution Compositions at Santa Eulalia, Chihuahua, Mexico[J].Economic Geology, 2000, 95(8):1673-1687.

    Google Scholar

    [26] 郑榕芬, 毛景文, 高建京.河南熊耳山沙沟银铅锌矿床中硫化物和银矿物的矿物学特征及其意义[J].矿床地质, 2006, 25(6):715-726.

    Google Scholar

    [27] Bouabdellah M, Beaudoin G, Leach D L, et al.Genesis of the Assif El Mal Zn-Pb(Cu, Ag)vein deposit.An extension-related Mesozoic vein system in the HighAtlas of Morocco.St ructural, mineralogical, and geochemical evidence[J].Miner Deposita, 2009, 44:489-704.

    Google Scholar

    [28] Chapman E P, Stevens R E.Silver-and bismuth-bearing galena from Leadville[J].Ecinomic Geology, 1933, 28(7):678-685.

    Google Scholar

    [29] Van H, Harry J.The ternary system Ag2S-Bi2S3-PbS[J].Economic Geology, 1960, 55(4):759-788.

    Google Scholar

    [30] Amcoff Ö.Distribution of silver in massive sulfide ores[J].Mineralium Deposita, 1984, 19(1):63-69.

    Google Scholar

    [31] Chang L, Wu D Q, Knowles C R.Phase relations in the system Ag2S-Cu2S-PbS-Bi2S3[J].Economic Geology, 1988, 83(2):405-418.

    Google Scholar

    [32] 周卫宁.中国主要伴(共)生银矿床银的赋存状态研究[J].矿产与地质, 1994, 8(4):233-244.

    Google Scholar

    [33] 何国锦, 杨晓春, 吴光明, 等.浙江西北银山银铅锌多金属矿床矿石矿物特征及成矿期次初步研究[J].地球学报, 2011, 32(3):304-312.

    Google Scholar

    [34] 胡耀国, 李朝阳, 廖震文, 等.贵州银厂坡银矿床银矿物特征及其赋存状态.矿物学报, 2000, 20(2):150-159.

    Google Scholar

    [35] Costagliola P, Benedetto F D, Benvenuty M, et al.Chemical speciation of Ag in galena by EPR spectroscopy[J].Mineralogical Society of America, 2003, 88(8/9):1345-1350.

    Google Scholar

    [36] 卢焕章.闪锌矿地质温度计和压力计[J].地质地球化学, 1975, (2):6-9.

    Google Scholar

    [37] Scott S D, Barnes H L.Sphalerite geothermometry and geobarometry[J].Economic Geology, 1971, 66:653-669.

    Google Scholar

    [38] Lusk J, Calder B O E, The composition of sphalerite and associated sulfides in reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S systems at 1 bar and temperatures between 250 and 535℃[J].Chemical Geology, 2004, 203: 319-345.

    Google Scholar

    [39] Viets J G, Hopkins R T, Miller B M.Variations in minor and trace metals in sphalerite from Mississippi Valley Type deposits of the Ozark region:genetic implications[J].Economic Geology, 1992, 87:1897-1905.

    Google Scholar

    [40] Zhang Q.Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits[J].Chinese Journal of Geochemistry, 1987, 6(2):177-190.

    Google Scholar

    [41] Huston D L, Sie S H, Suter G F, et al.Trace elements in sulfide minerals from eastern Australian volcanic hosted massive sulfide deposits.Part I.Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite.Part II.Selenium levels in pyrite comparison with δ34S values and implication for the source of sulfur in volcanogenic hydrothermal systems[J].Economic Geology, 1995, 90: 1167-1196.

    Google Scholar

    [42] Simon G, Essene E J.Phase relations among selenides, sulfides, tellurides, and oxides:I:Thermodynamic properties and calculated equilibria[J].Economic Geology, 1996, 91:1183-1208.

    Google Scholar

    [43] Yamamoto M.Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals[J].Mineralium Deposita, 1976, 11:197-209.

    Google Scholar

    [44] Zhou J X, Huang Z L, Zhou M F, et al.Constraints of C-O-S-Pb isotope compositions andRb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China[J].Ore Geology Reviews, 2013, 53:77-92.

    Google Scholar

    [45] 蔡应雄, 谭娟娟, 杨红梅, 等.湘南铜山岭铜多金属矿床成矿物质来源的S、Pb、C同位素约束[J].地质学报, 2015, 89(10):1792-1803.

    Google Scholar

    [46] 冯海滨, 张达, 狄永军, 等.闽西南大排铁铅锌多金属矿床O、S、Pb同位素组成及其成因意义[J].地质通报, 2015, 34(5):930-943.

    Google Scholar

    [47] Andrew A, Godwin C I, Sinclair A J.Mixing line isochrones:A new interpretation of galena lead isotope data from southeastern British Columbia[J].Economic Geology, 1984, 79:919-932.

    Google Scholar

    [48] 李龙, 郑永飞, 周建波.中国大陆地壳铅同位素演化的动力学模型[J].岩石学报, 2001, 17(1):61-68.

    Google Scholar

    [49] Stacey J S, Kramers J D.Approximation of terrestrial lead isotope evolution by a two-stage model[J].Earth and Planetary Science Letters, 1975, 26(2):207-221.

    Google Scholar

    [50] Doe B R, Zartman R E.Plumbotectonics: the Phanerozoic[C]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits.New York: John Wiley and Sons, 1979: 22-70.

    Google Scholar

    [51] Zartman R E, Haines S M.The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-a case for bi-directional transport[J].Geochimica et Cosmochimica Acta, 1988, 52(6):1327-1339.

    Google Scholar

    [52] 朱炳泉, 李献华, 戴橦谟.地球科学中同位素体系理论与应用——兼论中国大陆地壳演化[M].北京:科学出版社, 1998:216-230.

    Google Scholar

    [53] Seward T M.The formation of lead(Ⅱ)chloride complexes to 300℃:a spectrophotometric study[J].Geochimica et Cosmochimica Acta, 1984, 48:121-134.

    Google Scholar

    [54] Ruaya J R, Seward T M.The stability of chloro zinc(Ⅱ)Complexes in Hydrothermal Solutions up to 350℃[J].Geochimica et Cosmochimica Acta, 1986, 50(5):651-661.

    Google Scholar

    [55] Bourcier W L, Barnes H L.Ore solution chemistry-Ⅶ.Stability of chloride and bisulfide complexes of zinc to 350℃[J].Economic Geology, 1987, 82:1839-1863.

    Google Scholar

    [56] Seward T M.The Stability of Chloride Complexes of Silver in Hydrothermal Solutions up to 350℃[J].Geochimica et Cosmochimica Acta, 1976, 40(11):1329-1341.

    Google Scholar

    [57] Hayashi K, Sugaki A, Kitakaze A.Solubility of Sphalerite in Aqueous Sulfide Solutions at Temperatures Between 25 and 240℃[J].Geochimica et Cosmochimica Acta, 1990, 54(3):715-725.

    Google Scholar

    [58] Stefánsson A, Seward T M.Experimental determination of the Stability and Stoichiometry of Sulphide Complexes of Silver(Ⅰ)in Hydrothermal Solutions to 400℃[J].Geochimica et Cosmochimica Acta, 2003, 67(7):1395-1413.

    Google Scholar

    [59] 尚林波, 樊文苓, 邓海琳.热液中银、铅、锌共生分异的实验研究[J].矿物学报, 2003, 23(1):31-36.

    Google Scholar

    [60] 尚林波, 樊文苓, 胡瑞忠, 等.热液中铅-锌-银共生分异的热力学探讨[J].矿物学报, 2004, 24(1):81-86.

    Google Scholar

    安徽省地质矿产局313地质队.安徽省金寨县汞洞冲铅锌矿普查地质报告.1993 1-81.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1351) PDF downloads(12) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint