2020 Vol. 39, No. 2-3
Article Contents

ZHANG Aikui, LIU Zhigang, ZHANG Daming, LIU Guanglian, ZHANG Yong. Metallogenic model and discovery significance of the Chuakelaqian cryptoexplosion breccia type Pb-Zn deposit in the Qimantag metallogenic belt, Qinghai Province[J]. Geological Bulletin of China, 2020, 39(2-3): 319-329.
Citation: ZHANG Aikui, LIU Zhigang, ZHANG Daming, LIU Guanglian, ZHANG Yong. Metallogenic model and discovery significance of the Chuakelaqian cryptoexplosion breccia type Pb-Zn deposit in the Qimantag metallogenic belt, Qinghai Province[J]. Geological Bulletin of China, 2020, 39(2-3): 319-329.

Metallogenic model and discovery significance of the Chuakelaqian cryptoexplosion breccia type Pb-Zn deposit in the Qimantag metallogenic belt, Qinghai Province

  • There are many skarn, hydrothermal and porphyry type deposits which are closely related to Triassic granite and porphyry in Qimantag area of western East Kunlun metallogenic belt, Qinghai Province.A new type deposit, i.e., Chuakelaqian cryptoexplosion breccia type lead-zinc deposit, was discovered recently by vacancy prediction metallogenic theory.Based on a study of fluid inclusions and H-O-S isotopes, the authors found that there were two kinds of fluids in the Chuakelaqian deposit.One was middle-high temperature low salinity low density NaCl-CO2-H2O fluid and the other was low temperature middle salinity middle-low density NaCl-H2O fluid.Metallogenic pressures of two types of fluids were different.This coincides with the key of cryptoexplosion and mineralization that pressure is suddenly released.Ore-forming fluids originated from the mixing of magmatic and meteoritic water and S originated from magmatic activity.Based on summary of deposit characteristics, it is considered that the deposit was closely related to porphyry. The metallogenic model of the deposit was built up in combination with porphyry metallogenic characteristics of A area in the Kaerqueka deposit. The opinion that there exists large potential in prospecting for porphyry type deposits in the Chuakelaqian area was put forward. The discovery of this deposit has important scientific and exploration significance for promoting the breakthrough of porphyry prospecting and the study on metallogenic regularity of porphyry in Eastern Kunlun area.

  • 加载中
  • [1] 李世金, 孙丰月, 王力, 等.青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究[J].矿床地质, 2008, 27(3):399-406.

    Google Scholar

    [2] 何书跃, 李东生, 李良林, 等.青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J].大地构造与成矿学, 2009, (2):236-242.

    Google Scholar

    [3] 张爱奎, 莫宣学, 李云平, 等.青海西部祁漫塔格成矿带找矿新进展及其意义[J].地质通报, 2010, 29(7):1062-1074.

    Google Scholar

    [4] 赵一鸣, 丰成友, 李大新, 等.青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J].矿床地质, 2013, 32(1):1-19.

    Google Scholar

    [5] 张爱奎, 莫宣学, 袁万明, 等.东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J].矿物学报, 2016, 36(2):157-173.

    Google Scholar

    [6] 张爱奎, 李东生, 何书跃, 等.青海省祁漫塔格地区主要矿产成矿规律与成矿系列[M].北京:地质出版社, 2017:13-264.

    Google Scholar

    [7] 李东生, 张占玉, 苏生顺, 等.青海卡尔却卡铜钼矿床地质特征及成因[J].西北地质, 2010, 43(4):239-244.

    Google Scholar

    [8] 潘彤, 王秉璋, 李东生, 等.青海东昆仑成矿环境成矿规律与找矿方向[M].北京:地质出版社, 2015:57-130.

    Google Scholar

    [9] Marta F, Agnes L, Dabid L, et al.Porphyry to epithermal transition in the Agua Rica polymetallic deposit, Catamarca, Argentina:An Integrated petrologic analysis of ore and alteration paragenesen[J]. Ore Geology Reviews, 2011, 41(1):49-74.

    Google Scholar

    [10] 孟祥金, 侯增谦, 董光裕, 等.江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限[J].地质学报, 2009, 83(12):1951-1967.

    Google Scholar

    [11] 翟裕生, 姚书振, 崔彬, 等.成矿系列研究[M].武汉:中国地质大学出版社, 1996.

    Google Scholar

    [12] Bryner L.Breccia and pebble columns associated with epigenetic ore deposits[J]. Econ.Geol., 1961, 56(2):488-508.

    Google Scholar

    [13] Barton P B J, Bethke P M, Roedder E.Environment of ore deposition in the Creed mining district, San JuanMountains, Colorado:Part Ⅲ, Progress toward interpretation of the chemistry of the ore-forming fluid for the OH vein[J]. Econ.Geol., 1977, 72:1-24.

    Google Scholar

    [14] Henley R W.The geological framework of epithermal deposits, In:Berger B R, Bethke P M.Eds.Geology and Geochemistry of Epithermal Systems[J]. Rev.Econ.Geol.Texas:Soci.Econ.Geol., 1985, 2:1-24.

    Google Scholar

    [15] Thompson T B, Tripple A D, Dwelley P C.Mineralized vein and breccias of the Cripple Creek District, Colorado[J]. Econ.Geol., 1985, 80(6):1669-1688.

    Google Scholar

    [16] Sillitoe R H.Ore-related breccias in volcanoplutonic arcs[J]. Econmic Geology, 1985, 80(6):1467-1514.

    Google Scholar

    [17] Sillitoe R H, Bonham Jr H F.Sediment-hosted gold deposite:Distal product of magmatic-hydrothermal Systems[J]. Geology, 1990, 18:157-161.

    Google Scholar

    [18] Henly R W.Epithermal gold deposits in the volcanic terranes[C]//Forster R P.Gold metallogeny and exploration.Blackie and Sons Ltd., Glasgow, 1991: 137-142.

    Google Scholar

    [19] Barker E M, Andrew A S.Geological, fluid inclusion, and stable isotope studies of the gold-bearing breccia pipe at Kinston, Queesland, Aust ralia[J]. Econ.Geol., 1991, 86(4):810-830.

    Google Scholar

    [20] Pirajno F.Volcanic-hosted epithermal systems in northwest Turkey[J]. S.Afr. J.Geol., 1995, 98(1):13-24.

    Google Scholar

    [21] 马璟璟, 陈澍豪, 张鹏, 等.卡尔却卡矽卡岩带、隐爆角砾岩多金属矿矿床特征及矿床成因分析[J].世界有色金属, 2018, 7:134-135.

    Google Scholar

    [22] 王秉璋, 陈静, 罗照华, 等.东昆仑祁漫塔格东段晚二叠世—早侏罗世侵入岩岩石组合时空分布、构造环境的讨论[J].岩石学报, 2014, 30(11):3213-3228.

    Google Scholar

    [23] 青海省地质矿产局.青海省区域地质志[M].北京:地质出版社, 1991:56-540.

    Google Scholar

    [24] 王秉璋, 张雪亭, 李建放, 等.东昆仑西段古生代—中生代主要地质事件的证据[J].青藏高原东北部地质研究, 2005, 18-24.

    Google Scholar

    [25] 莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414.

    Google Scholar

    [26] 张爱奎.青海野马泉地区晚古生代—早中生代岩浆作用与成矿研究[D].中国地质大学(北京), 2012.

    Google Scholar

    [27] 林仕良, 雍永源, 高大发.西藏东部隐爆角砾岩特征及其含矿性[J].沉积与特提斯地质, 2003, 23(3):49-53.

    Google Scholar

    [28] 刘继顺, 马光, 舒广龙.湖北铜绿山矽卡岩型铜铁矿床中隐爆角砾岩型金(铜)矿体的发现及其找矿前景[J].矿床地质, 2005, 24(5):527-536.

    Google Scholar

    [29] Roedder E.Fluid inclusions[J]. Mineralogical Society of America, Reviews in Mineralogy, 1984, (12):644.

    Google Scholar

    [30] 卢焕章, 范宏瑞, 倪培, 等.流体包裹体[M].北京:科学出版社, 2004:132-208.

    Google Scholar

    [31] Clayton R N, O' Neil J R, Mayeda T K.Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77:3057-3067.

    Google Scholar

    [32] Taylor H P.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69 (6):843-883

    Google Scholar

    [33] Sheppard S M F.The Comubian batholith, SW England:D/H and 18O/16O studies of kaolinite and other alteration minerals[J]. Journal of the Geological Society, 1977, 133(6):573-591.

    Google Scholar

    [34] Sillitoe R H, Halls C, Grant J N.Porphyry tin deposits in Bolivia[J]. Economic Geology, 1975, 70:913-927.

    Google Scholar

    [35] Ross P S, Jebrak M, Walker B M.Discharge of hydrothermal fluids from a magma chamber and Concomitant Formation of a stratifyied breccia zone at the Questa porphyry molybdenum deposit, New Mexico[J]. Economic Geology, 2002, 97:1679-1699.

    Google Scholar

    [36] Yang K, Bodnar R J.Orthomagmatic origin for the llkwang Cu-W breccia pipe deposit, southeastern Kyongsang Basin, South Korea[J]. Journal of Asian Earth Sciences, 2004, 24(2):259-270.

    Google Scholar

    [37] 张会琼, 王京彬, 王玉往.山西灵丘支家地铅锌银矿隐爆角砾岩筒的岩相分带性研究及其勘查意义[J].地质论评, 2012, 58(6):1046-1055.

    Google Scholar

    [38] Richards J P.Alkalic-type epithermal gold deposits A review[J]. Mineralogical Association of Canada Short Course, 1995, 23:367-400.

    Google Scholar

    [39] Sillitoe R H, Hedenquist J W.Linkage between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits[J]. Society of Econmic Geology, 2003, 10:315-343.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(699) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint