2020 Vol. 39, No. 2-3
Article Contents

DONG Yi, DENG Jianghong, LIU Xianfan. Zircon U-Pb age and geochemical characteristics of Langding intrusion of Shangri-La, Yunnan Province[J]. Geological Bulletin of China, 2020, 39(2-3): 296-306.
Citation: DONG Yi, DENG Jianghong, LIU Xianfan. Zircon U-Pb age and geochemical characteristics of Langding intrusion of Shangri-La, Yunnan Province[J]. Geological Bulletin of China, 2020, 39(2-3): 296-306.

Zircon U-Pb age and geochemical characteristics of Langding intrusion of Shangri-La, Yunnan Province

  • The west porphyry belt and east porphyry belt in Shangri-La are mainly composed of Indosinian intermediate-acidic intrusive complex rocks.In the western porphyry belt, there are Luanitang porphyry, Xuejiping porphyry, Chundu porphyry, Are porphyry and Langding porphyry from north to south.In the eastern porphyry belt, there are Disuga porphyry, Songnuo porphyry, Pulang porphyry and Lanzhong porphyry from north to south.The Langding porphyry is mainly composed of hornblende diorite porphyrite, quartz diorite porphyrite and pyroxene diorite porphyrite.The zircon U-Pb age indicates that the intrusive rock has an age of 206.4±3.9 Ma.Geochemical characteristics of the Langding porphyry are similar to those of adakite, whose SiO2 is higher than 56.66, averaging 60.42%, and whose δEu is not distinct (0.90~1.23, averaging 1.08).Chondrite-normalized REE patterns show right-inclined feature, and are characterized by enrichment of LREE and LILE, heavy depletion of HREE, high Sr (490×10-6~1165×10-6, averaging 842×10-6), Sr/Y (37.4~77.2, averaging 56.9) and La/Yb (21.7~28.4, averaging 25.6), but low Y (13.1×10-6~17.4×10-6, averaging 14.6×10-6) and Yb (1.20×10-6~1.61×10-6, averaging 1.37×10-6).The results of the studies of major oxides, REEs, trace elements and zircon U-Pb age show that the Langding rock body was formed in an island arc environment, and its formation was related to the partial melting of the low-angle subduction of Garze-Litang oceanic crust slab.

  • 加载中
  • [1] 莫宣学, 路凤香, 沈上越, 等.三江特提斯火山作用与成矿[M].北京:地质出版社, 1993.

    Google Scholar

    [2] 侯增谦, 杨岳清, 曲晓明, 等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报, 2004, 78(1):109-118.

    Google Scholar

    [3] 李文昌, 尹光候, 卢映祥, 等.西南"三江"格咱火山-岩浆弧中红山-属都蛇绿混杂岩带的厘定及其意义[J].岩石学报, 2010, 26(6):1662-1664.

    Google Scholar

    [4] 曾普胜, 王海平, 莫宣学, 等.中甸岛弧带构造格架及斑岩铜矿前景[J].地球学报, 2004, 25(5):535-540.

    Google Scholar

    [5] 曾普胜, 莫宣学, 喻学惠, 等.滇西北中甸斑岩及斑岩铜矿[J].矿床地质, 2003, 20(4):393-400.

    Google Scholar

    [6] 杨岳清, 侯增谦, 黄典豪, 等.中甸弧碰撞造山作用与岩浆成矿系统[J].地球学报, 2003, 23(1):17-24.

    Google Scholar

    [7] 庞振山, 杜杨松, 王功文, 等.云南普朗复式岩体地质地球化学特征及成因[J].地质通报, 2009, 28(4):531-537.

    Google Scholar

    [8] 林清茶, 夏斌, 张玉泉.云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义[J].地质通报, 2006, 25(z1):143-147.

    Google Scholar

    [9] 李文昌, 尹光侯, 余海军, 等.滇西北格咱火山-岩浆弧斑岩成矿作用[J].岩石学报, 2011, 27(9):2544-2550.

    Google Scholar

    [10] 冷成彪, 张兴春, 王守旭, 等.云南中甸地区两个斑岩铜矿容矿斑岩的地球化学特征-以雪鸡坪和普朗斑岩铜矿床为例[J].矿物学报, 2007, 27(3/4):416-419.

    Google Scholar

    [11] 任江波, 许继锋, 陈建林.中甸岛弧成矿斑岩的锆石年代学及其意义[J].岩石学报, 2011, 27(9):2592-2598.

    Google Scholar

    [12] 董毅, 刘显凡, 邓江红, 等.中甸弧西斑岩带印支期中酸性侵入岩成因与成矿意义[J].中国地质, 2012, 39(4):887-899.

    Google Scholar

    [13] 董毅, 刘显凡, 邓江红, 等.滇西香格里拉阿热岩体岩相学与矿物化学特征及意义[J].地质学报, 2013, 87(4):498-514.

    Google Scholar

    [14] Chung S L, Liu D Y, Ji J Q, et al.Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11):1021-1024.

    Google Scholar

    [15] Huang F, Li S G, Dong F, et al.High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust[J]. Chemical Geology, 2008, 255(1/2):1-13.

    Google Scholar

    [16] Wang B Q, Zhou M F, Li J W, et al.Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization[J]. Lithos, 2011, 127(1/2):24-38.

    Google Scholar

    [17] Leng C B, Zhang X C, Hu R Z, et al.Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China[J]. Journal of Asian Earth Sciences, 2012, 60:31-48.

    Google Scholar

    [18] Lu Y J, Kerrich R, Mccuaig T C, et al.Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: petrogenesis and tectonic implications[J]. Journal of the Petrology, 2013, 54:1309-1348.

    Google Scholar

    [19] Ludwig K R.User's manual for Isoplot 3.75: a geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronol.Cent.Spec.Publ, 2012: 1-75.

    Google Scholar

    [20] Winchester J A, Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343.

    Google Scholar

    [21] Irvine T, Baragar W.A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5):523-548.

    Google Scholar

    [22] Sun S S, Mcdonough W E.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42:313-345.

    Google Scholar

    [23] Pearce J A, Harris N B, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983.

    Google Scholar

    [24] Defant M J, Drummond M S.Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Nature, 1990, 347:662-665.

    Google Scholar

    [25] Xu J F, Shinjo R, Defant M J, et al.Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30(12):1111-1114.

    Google Scholar

    [26] Gao S, Rudnick R L, Yuan H L, et al.Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019):892-897.

    Google Scholar

    [27] Wang Q, Wyman D A, Xu J F, et al.Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planet Science Letters, 2008, 272(1/2):158-171.

    Google Scholar

    [28] Xiao L, Clemens J D.Origin of potassic(C-type)adakite magmas: Experimental and field constraints[J]. Lithos, 2007, 95(3/4):399-414.

    Google Scholar

    [29] Castillo P R, Janney P E, Solidum R U.Petrology and geochemistry of Camiguin island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrogy, 1999, 134:33-51.

    Google Scholar

    [30] Guo F, Nakamuru E.Fan W M, et al.Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China[J]. Journal of Petrology, 2007, 48(4):661-692.

    Google Scholar

    [31] Garrison J M, Davidson J P.Dubious case for slab melting in the Northern volcanic zone of the Andes[J]. Geology, 2003, 31(6):565-568.

    Google Scholar

    [32] Castillo P R.Adakite petrogenesis[J]. Lithos, 2012, 134:304-316.

    Google Scholar

    [33] Gutscher M A, Maury R, Eissen J P, et al.Can slab melting be caused by flat subduction?[J]. Geology, 2000, 28(6):535-538.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(506) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint