2020 Vol. 39, No. 5
Article Contents

WANG Jiaxing, LIU Zhibo, LI Haifeng, WANG Chao, ZHANG Kaijiang, SUN Miao. Age, Hf isotopes and geochemistry of Early Cretaceous granodiorite-porphyry in the middle segment of Bangong Co-Nujiang suture zone of Tibet[J]. Geological Bulletin of China, 2020, 39(5): 608-620.
Citation: WANG Jiaxing, LIU Zhibo, LI Haifeng, WANG Chao, ZHANG Kaijiang, SUN Miao. Age, Hf isotopes and geochemistry of Early Cretaceous granodiorite-porphyry in the middle segment of Bangong Co-Nujiang suture zone of Tibet[J]. Geological Bulletin of China, 2020, 39(5): 608-620.

Age, Hf isotopes and geochemistry of Early Cretaceous granodiorite-porphyry in the middle segment of Bangong Co-Nujiang suture zone of Tibet

More Information
  • Early Cretaceous igneous rocks are widely distributed in the middle segment of Bangong Co-Nujiang suture zone, and the nature of magma source and petrogenesis of these rocks are of great significance for the closure of the Bangong Co-Nujiang Ocean. The authors carried out systematic petrographic, geochemical and isotopic studies of the granodiorite-porphyries from Dongkaco microcontinent, middle segment of the Bangong Co-Nujiang suture zone.The results show that the granodiorite-porphyries have the age of 109.4±1.9 Ma by zircon U-Pb dating method, and granodiorite-porphyries are characterized by high K calc-alkaline series, enrichment of SiO2, Al2O3 and depletion of Mg#.The content of ∑REE is relatively low(196.45×10-6~207.6×10-6)and the rocks are relatively enriched in LREEs and depleted in HREEs. In the spider diagram the trace elements are inclined to the right in zigzag form and display enrichment of large-ion lithophile elements and relative depletion of high field strength elements.The granodiorite-porphyries have negative zircon εHf(t) values(-4.21~-10.59), corresponding to crustal Hf model ages of 1438~1842 Ma and showing the characteristics of the ancient crust.Combining the above characteristics with regional information, it is believed that the granodiorite-porphyries were found in the Dongkaco microcontinent and belonged to I-type granite, which may be the product of magmatic activity caused by the oceanic fragmentation during the collision between the Dongkaco micro-continent and the Central Lhasa or Nie Rong terrane.

  • 加载中
  • [1] Zhu D C, Zhao Z D, Niu Y L, et al.The origin and pre-Cenozoic evolution of the Tibetan Plateau[J].Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

    [2] Zhu D C, Zhao Z D, Niu Y L, et al.The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J].Earth and Planetary Science Letters, 2011, 301:241-255. doi: 10.1016/j.epsl.2010.11.005

    CrossRef Google Scholar

    [3] 尹安.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长[J].地球学报, 2001, 22(3):193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001

    CrossRef Google Scholar

    [4] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, (3):521-533.

    Google Scholar

    [5] Allègre C J, Courtillot V, Tapponnier P, et al.Structure and evolution of the Himalaya-Tibet orogenic belt[J].Nature, 1984, 307:17-22. doi: 10.1038/307017a0

    CrossRef Google Scholar

    [6] 史仁灯.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J].科学通报, 2007, 52(2):223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016

    CrossRef Google Scholar

    [7] Fan J J, Li C, Xie C M, et al.The evolution of the Bangong-Nujiang Neo-Tethys Ocean:Evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites[J].Tectonophysics, 2015, 655:27-40. doi: 10.1016/j.tecto.2015.04.019

    CrossRef Google Scholar

    [8] 潘桂棠, 陈智梁, 李兴振, 等.东特提斯地质构造形成演化[M].北京:地质出版社.1997.

    Google Scholar

    [9] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2005, 22(3):521-533.

    Google Scholar

    [10] 耿全如, 潘桂棠, 王立全, 等.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 2011, 30(8):1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013

    CrossRef Google Scholar

    [11] Guynn J H, Kapp P, Pullen A, et al.Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J].Geological Society of American, 2006, 34(6):505-508.

    Google Scholar

    [12] Zeng Y C, Chen J L, Xu J F, et al.Sediment melting during subduction initiation:geochronological and geochemical evidence from the darutso high-mg andesites within ophiolite melange, central tibet[J].Geochemistry, Geophysics, Geosystems, 2016, 17(12):4859-4877. doi: 10.1002/2016GC006456

    CrossRef Google Scholar

    [13] 李海峰, 刘治博, 陈伟, 等.西藏蓬错地区高镁流纹质岩石的发现及对班公湖-怒江洋演化的指示意义[J].岩石学报, 2019, (3):799-815.

    Google Scholar

    [14] 李小波, 王保弟, 刘函, 等.西藏达如错地区晚侏罗世高镁安山岩-班公湖-怒江洋壳俯冲消减的证据[J].地质通报, 2015, 34(2/3):251-261.

    Google Scholar

    [15] 李世民.西藏班公湖-怒江特提斯洋的俯冲极性和过程: 岩浆岩和碎屑锆石记录[D].中国地质大学(北京)博士学位论文, 2018.http://cdmd.cnki.com.cn/Article/CDMD-11415-1018017533.htm

    Google Scholar

    [16] Hu P Y, Zhai Q G, Jahn B M, et al.Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau:Evidence of lithospheric delamination[J].Gondwana Research, 2017, 44:116-138. doi: 10.1016/j.gr.2016.12.005

    CrossRef Google Scholar

    [17] 陈玉禄, 江元生.西藏班戈-切里错地区早白垩世火山岩的时代确定及意义[J].地质力学学报, 2002, 8(1):43-49. doi: 10.3969/j.issn.1006-6616.2002.01.005

    CrossRef Google Scholar

    [18] 张亮亮, 朱弟成, 赵志丹, 等.西藏北冈底斯巴尔达地区岩浆作用的成因:地球化学、年代学及Sr-Nd-Hf同位素约束[J].岩石学报, 2010, 26(6):1871-1888.

    Google Scholar

    [19] 唐跃, 翟庆国, 刘通, 等.西藏班戈县达如错花岗斑岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J].地质通报, 2015, 34(10):1802-1811. doi: 10.3969/j.issn.1671-2552.2015.10.004

    CrossRef Google Scholar

    [20] 强巴扎西, 吴浩, 格桑旺堆, 等.班公湖-怒江结合带中段东巧地区早白垩世岩浆作用——对大洋演化和地壳增厚的指示[J].地质通报, 2016, 35(5):648-666. doi: 10.3969/j.issn.1671-2552.2016.05.003

    CrossRef Google Scholar

    [21] 李光明, 冯孝良, 黄志英, 等.西藏冈底斯构造带中段多岛弧-盆系及其演化[J].沉积与特提斯地质, 2000, 20(4):38-46. doi: 10.3969/j.issn.1009-3850.2000.04.004

    CrossRef Google Scholar

    [22] 陈玉禄, 何建社, 张宽忠, 等.班公错-怒江结合带中段的构造格局探讨[C]//青藏高原及邻区地质与资源环境学术讨论会论文摘要汇编.2003.http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200304001101.htm

    Google Scholar

    [23] Nasdala L, Kronz A, Wirth R, et al.The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon[J].Geochimica Et Cosmochimica Acta, 2008, 73(6):1637-1650.

    Google Scholar

    [24] Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [25] Zhou L M, Wang Rui, Hou Z Q, et al.Hot Paleocene-Eocene Gangdese arc:Growth of continental crust in southern Tibet[J].Gondwana Research, 2018, 62:178-197. doi: 10.1016/j.gr.2017.12.011

    CrossRef Google Scholar

    [26] Hoskin P W O, Black L P.Metamorphic zircon formation by solid-slate recrystallization of protolith igneous zircon[J].Journal of Metamorphic geology, 2000, 18:423-439.

    Google Scholar

    [27] Roche H D L, Leterrier J, Grandclaude P, et al.A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses-Its relationships with current nomenclature[J].Chemical Geology, 1980, 29(1):183-210.

    Google Scholar

    [28] Hastie A R, Kerr A C, Pearce J A, et al.Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram[J].Journal of Petrology, 2007, 48(12):2341-2357. doi: 10.1093/petrology/egm062

    CrossRef Google Scholar

    [29] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989, 101(5):635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [30] Jiang Y H, Zhao P, Zhou Q, et al.Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China[J].Lithos, 2011, 121(1/4):55-73.

    Google Scholar

    [31] Sun S S, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society London Specia Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [32] 吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220.

    Google Scholar

    [33] Collins W J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy and Petrology, 1982, 80(2):189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [34] White A J R, Chappell B W.Granitoid types and their distribution in the Lachlan Fold Belt, south-eastern Australia[J].Geological Society of America Memoris, 1983, 159:21-34.

    Google Scholar

    [35] Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [36] Chappell B W, White A J R.I- and S-type granites in the Lachlan Fold Belt.Transactions of the Royal Society of Edinburgh[J].Earth and Environmental Science, 1992, 83(1/2):1-26.

    Google Scholar

    [37] 徐克勤, 孙鼐, 王德滋, 等.华南两类不同成因花岗岩岩石学特征[J].岩石矿物学杂志, 1982, (2):1-12.

    Google Scholar

    [38] Chappell B W, White A J R.Two constrasting granitetypes[J].PacificGeol, 1974, 8:173-174.

    Google Scholar

    [39] Chappell B W, White A J R.Two contrasting granite types:25 years later[J].Australian Journal of Earth Sciences, 2001, 48:489-499. doi: 10.1046/j.1440-0952.2001.00882.x

    CrossRef Google Scholar

    [40] Griffin W L, Wang, Jackson S E, et al.Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J].Lithos, 2002, 61:237-269. doi: 10.1016/S0024-4937(02)00082-8

    CrossRef Google Scholar

    [41] Li S M, Zhu D C, Wang Q, et al.Northward subduction of Bangong-Nujiang Tethys:Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J].Lithos, 2014, 205:284-297. doi: 10.1016/j.lithos.2014.07.010

    CrossRef Google Scholar

    [42] Kemp A I S, Hawkesworth C J, Foster G L, et al.Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J].Science, 2007, 315(5814):980-983. doi: 10.1126/science.1136154

    CrossRef Google Scholar

    [43] Collins W J, Richards S W.Geodynamic significance of S-type granites in circum-Pacific orogens[J].Geology, 2008, 36(7):559-562. doi: 10.1130/G24658A.1

    CrossRef Google Scholar

    [44] Beard J S, Lofgren G E.Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb[J].Journal of Petrology, 1991, 32(2):365-401. doi: 10.1093/petrology/32.2.365

    CrossRef Google Scholar

    [45] Bea F, Arzamastsev A, Montero P, et al.Anomalous alkaline rocks of Soustov, Kola:evidence of mantle-derived metasomatic fluids affecting crustal materials[J].Contributions to Mineralogy & Petrology, 2001, 140(5):554-566.

    Google Scholar

    [46] Rudnick R L, Gao S.Composition of the Continental Crust[J].Treatise Geochem, 2003, 3:1-64.

    Google Scholar

    [47] Rushmer T.Partial melting of two amphibolites:contrasting experimental results under fluid-absent conditions[J].Contributions to Mineralogy and Petrology, 1991, 107(1):41-59. doi: 10.1007/BF00311184

    CrossRef Google Scholar

    [48] Rapp R P, Watson E B.Dehydration Melting of metabasalt at 8~32 kbar:Implications for continental growth and crust-mantle recycling[J].Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [49] Sisson T W, Ratajeski K, Hankins W B, et al.Voluminous granitic magmas from common basaltic sources[J].Contributions to Mineralogy and Petrology, 2005, 148:635-661. doi: 10.1007/s00410-004-0632-9

    CrossRef Google Scholar

    [50] Kapp P, DeCelles P G, Gehrels G E, et al.Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J].Geological Society of America Bulletin, 2007, 119:917-932. doi: 10.1130/B26033.1

    CrossRef Google Scholar

    [51] 朱弟成, 莫宣学, 赵志丹, 等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报, 2008, 24(3):401-412.

    Google Scholar

    [52] 康志强, 许继峰, 董彦辉, 等.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?[J].岩石学报, 2008, 24(2):303-314.

    Google Scholar

    [53] 张亮亮, 朱弟成, 赵志丹, 等.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 2011, 27(7):1938-1948.

    Google Scholar

    [54] Zhu D C, Mo X X, Niu Y L, et al.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J].Chemical Geology, 2009, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008

    CrossRef Google Scholar

    [55] Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [56] 丛斌.西藏安多地区白垩纪火山岩地球化学特征及地质意义[D].中国地质大学(北京)硕士学位论文, 2015.http://cdmd.cnki.com.cn/Article/CDMD-11415-1015389622.htm

    Google Scholar

    [57] Zhu D C, Li S M, Cawood P A, et al.Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J].Lithos, 2016, 245:7-17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    西藏自治区地质调查院.1: 250000班戈副(H46C001001)区域地质调查报告.2002.

    Google Scholar

    湖北省地质调查院.1: 50000班戈江错地区(H46E002003、H46E002004、H46E003003 H46E003004、H46E004003、H46E004004)6幅区域地质矿产调查.2005.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(668) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint