2020 Vol. 39, No. 5
Article Contents

JIANG Hongan, ZOU Mingliang, OUYANG Pingning, WANG Qianlin, LI Jie, YAN Yue. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis[J]. Geological Bulletin of China, 2020, 39(5): 728-734.
Citation: JIANG Hongan, ZOU Mingliang, OUYANG Pingning, WANG Qianlin, LI Jie, YAN Yue. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis[J]. Geological Bulletin of China, 2020, 39(5): 728-734.

40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis

More Information
  • Late stage dykes like granite porphyry and lamprophyre veins are common around the ore deposits in Lujing area, the central section of Zhuguangshan pluton.K-feldspar 40Ar-39Ar isotope geochronologic analysis indicates that the granite porphyry vein was formed at 116.24±0.49 Ma while the lamprophyre vein intruded at 128.27±0.86 Ma, indicating that their intrusion corresponded to crustal extension magmatism during the Early Cretaceous.The magmatic chronologies recorded by the dykes are consistent with the uranium mineralization age of the Lujing orefield.Both the granite porphyry vein and the uranium ore present the characteristics of mantle source, indicating that the acidic magma source of the former one might have provided not only metallogenic materials but also heat source for uranium mineralization.During the process of uranium mineralization, the basic magma source of the lamprophyre provided favorable conditions such as heat generation, mineralizer, fluid and dynamic conditions for uranium mineralization.

  • 加载中
  • [1] 邱爱金, 郭令智, 郑大瑜, 等.江西相山地区中、新生代构造演化对富大铀矿形成的制约[J].高校地质学报, 1999, 5(4):418-425.

    Google Scholar

    [2] 吴玉.相山铀矿田成矿流体地球化学特征及矿床成因探讨[D].东华理工大学硕士学位论文, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10405-1013045676.htm

    Google Scholar

    [3] 李妩巍, 王敢, 许来生, 等.大坪里-向阳坪地区铀成矿条件分析[J].世界核地质科学, 2010, 27(2):72-77. doi: 10.3969/j.issn.1672-0636.2010.02.002

    CrossRef Google Scholar

    [4] 李建红, 夏宗强.贵东-诸广山大型铀矿聚集区典型矿床式和成矿模式及成矿预测[J].矿床地质, 2010, 29(S1):137-138.

    Google Scholar

    [5] 胡欢, 王汝成, 陈卫锋, 等.桂东北豆乍山产铀花岗岩热液活动时限的确定与铀成矿意义[J].科学通报, 2013, 58(36):3849-3858.

    Google Scholar

    [6] 黄宏业, 黄思东, 蔡松峰.湖南鹿井地区铀成矿地质背景及找矿思路分析[J].世界核地质科学, 2008, 25(2):63-67. doi: 10.3969/j.issn.1672-0636.2008.02.001

    CrossRef Google Scholar

    [7] Hu R Z, Burnard P G, Bi X W, et al.Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi province, China:Evidence from He, Ar and C isotopes[J].Chemical Geology, 2009, 266(1/2):86-95.

    Google Scholar

    [8] 舒良树.华南构造演化的基本特征[J].地质通报, 2012, 31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    [9] 陈毓川, 裴荣富, 张宏良.南岭地区与中生代花岗岩类有关的有色、稀有金属矿床地质[J].中国地质科学院院报, 1990, 11(1):79-85.

    Google Scholar

    [10] 黄宏业, 黄思东, 陈培荣.湖南九曲岭地区铀矿化产出环境分析[J].铀矿地质, 2006, 22(5):276-280. doi: 10.3969/j.issn.1000-0658.2006.05.003

    CrossRef Google Scholar

    [11] 邓发根.诸广山复式岩体铀成矿特征及成矿规律初探[J].湘潭师范学院学报(自然科学版), 2007, 29(3):96-98.

    Google Scholar

    [12] 邵飞, 朱永刚, 郭湖生, 等.鹿井矿田铀成矿地质特征及找矿潜力分析[J].铀矿地质, 2010, 26(5):295-300. doi: 10.3969/j.issn.1000-0658.2010.05.007

    CrossRef Google Scholar

    [13] 张万良, 何晓梅, 吕川, 等.鹿井铀矿田成矿地质特征及控矿因素[J].铀矿地质, 2011, 27(2):81-87. doi: 10.3969/j.issn.1000-0658.2011.02.004

    CrossRef Google Scholar

    [14] 张金带, 刘翔, 杨尚海, 等.中南铀矿地质志[M].北京:中国核工业地质局, 2005.

    Google Scholar

    [15] 李献华, 胡瑞忠, 饶冰.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学, 1997, 26(2):19-21.

    Google Scholar

    [16] Li J H, Zhang Y Q, Dong S W, et al.Cretaceous tectonic evolution of South China:A preliminary synthesis[J].Earth-Science Reviews, 2014, 134(1):98-136.

    Google Scholar

    [17] 李建华.华南中生代大地构造过程[D].中国地质科学院博士学位论文, 2013.http://cdmd.cnki.com.cn/Article/CDMD-82501-1013233489.htm

    Google Scholar

    [18] Yan X, Jiang S Y, Jiang Y H.Geochronology, geochemistry and tectonic significance of the late Mesozoic volcanic sequences in the northern Wuyi Mountain volcanic belt of South China[J].Gondwana Research, 2015, 37:362-383.

    Google Scholar

    [19] Qi Y Q, Hu R Z, Liu S, et al.Petrogenesis and geodynamic setting of Early Cretaceous mafic-ultramafic intrusions, South China:A case study from the Gan-Hang tectonic belt[J].Lithos, 2016, 258/259:149-162. doi: 10.1016/j.lithos.2016.04.027

    CrossRef Google Scholar

    [20] 王剑, 包超民, 高永华, 等.浙北富阳神功村二长花岗斑岩脉SHRIMP锆石U-Pb年龄及其地质意义[J].地质通报, 2003, 22(9):729-732. doi: 10.3969/j.issn.1671-2552.2003.09.018

    CrossRef Google Scholar

    [21] 崔玉荣, 谢智, 陈江峰, 等.浙东晚中生代玄武岩的锆石SHRIMP U-Pb年代学及其地质意义[J].高校地质学报, 2010, 16(2):198-212. doi: 10.3969/j.issn.1006-7493.2010.02.007

    CrossRef Google Scholar

    [22] Cui J B, Zhang Y Q, Dong S W, et al.Zircon U-Pb geochronology of the Mesozoic metamorphic rocks and granitoids in the coastal tectonic zone of SE China:Constraints on the timing of Late Mesozoic orogeny[J].Journal of Asian Earth Sciences, 2013, 62:237-252. doi: 10.1016/j.jseaes.2012.09.014

    CrossRef Google Scholar

    [23] 肖娥, 邱检生, 徐夕生, 等.浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义[J].岩石学报, 2007, 23(6):1431-1440. doi: 10.3969/j.issn.1000-0569.2007.06.019

    CrossRef Google Scholar

    [24] 邹东风.粤北下庄矿田铀矿地球化学研究[D].中国地质大学硕士学位论文, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10491-1012446506.htm

    Google Scholar

    [25] Zhou X M, Li W X.Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J].Tectonophysics, 2000, 326(3/4):269-287.

    Google Scholar

    [26] Chen C H, Lee C Y, Lu H Y, et al.Generation of Late Cretaceous silicic rocks in SE China:Age, major element and numerical simulation constraints[J].Journal of Asian Earth Sciences, 2008, 31(4/6):479-498.

    Google Scholar

    [27] 邹东风, 李方林, 张爽, 等.粤北下庄335矿床成矿时代的厘定——来自LA-ICP-MS沥青铀矿U-Pb年龄的制约[J].矿床地质, 2011, 30(5):912-922. doi: 10.3969/j.issn.0258-7106.2011.05.012

    CrossRef Google Scholar

    [28] Hu R Z, Bi X W, Zhou M F, et al.Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary[J].Economic Geology, 2008, 103(3):583-598. doi: 10.2113/gsecongeo.103.3.583

    CrossRef Google Scholar

    [29] 陈培荣.华南东部中生代岩浆作用的动力学背景及其与铀成矿关系[J].铀矿地质, 2004, 20(5):266-270. doi: 10.3969/j.issn.1000-0658.2004.05.003

    CrossRef Google Scholar

    [30] 胡瑞忠, 毕献武, 苏文超, 等.华南白垩-第三纪地壳拉张与铀成矿的关系[J].地学前缘, 2004, 11(1):153-160. doi: 10.3321/j.issn:1005-2321.2004.01.012

    CrossRef Google Scholar

    [31] 胡瑞忠, 李朝阳, 倪师军, 等.华南花岗岩型铀矿床成矿热液中∑CO2来源研究[J].中国科学(B辑), 1993, 23(2):189-196.

    Google Scholar

    [32] 石少华, 胡瑞忠, 温汉捷, 等.桂北沙子江铀矿床成矿年代学研究:沥青铀矿U-Pb同位素年龄及其地质意义[J].地质学报, 2010, 84(8):1175-1182.

    Google Scholar

    [33] 和文言, 莫宣学, 喻学惠, 等.滇西北衙煌斑岩的岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束[J].岩石学报, 2014, 30(11):3287-3300.

    Google Scholar

    [34] 贾丽琼, 莫宣学, 董国臣, 等.滇西马厂箐煌斑岩成因:地球化学、年代学及Sr-Nd-Pb-Hf同位素约束[J].岩石学报, 2013, 29(4):1247-1260.

    Google Scholar

    [35] 刘畅, 赵泽辉, 郭召杰.甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论[J].岩石学报, 2006, 22(5):1294-1306.

    Google Scholar

    [36] 韩娟, 王彦斌, 王登红, 等.江西黄蜂岭铀矿床花岗岩时代、成因:锆石U-Pb年龄和Hf同位素证据[J].地质与勘探, 2011, 47(2):284-293.

    Google Scholar

    [37] 潘春蓉, 张笑天.鹿井铀矿床流体的H、O同位素特征[J].矿物学报, 2015, 34(S1):331.

    Google Scholar

    [38] 夏宗强, 李建红.贵东-诸广山地区白垩纪中基性岩脉特征及其与铀成矿关系[J].矿物学报, 2009, 28(S1):641-643.

    Google Scholar

    [39] Leroy J.The Margnac and Fanay uranium deposits of the La Crouzille District(western Massif Central, France), geologic and fluid inclusion studies[J].Economic Geology, 1978, 73(8):1611-1634. doi: 10.2113/gsecongeo.73.8.1611

    CrossRef Google Scholar

    [40] 张展适, 华仁民, 巫建华, 等.下庄铀矿田337矿床成矿机理及动力学背景[J].铀矿地质, 2009, 25(1):1-6.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(598) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint