2020 Vol. 39, No. 5
Article Contents

LI Runwu, ZHANG Xin, SHI Qiang, CHEN Wanfeng, AN Yi, HUANG Yaoshen, LIU Yixin, WANG Jinrong. Geochemistry and Nd-Hf isotopes of the Early Permian volcanic rocks in Hangwula of northern Alxa area and their tectonic significance[J]. Geological Bulletin of China, 2020, 39(5): 647-658.
Citation: LI Runwu, ZHANG Xin, SHI Qiang, CHEN Wanfeng, AN Yi, HUANG Yaoshen, LIU Yixin, WANG Jinrong. Geochemistry and Nd-Hf isotopes of the Early Permian volcanic rocks in Hangwula of northern Alxa area and their tectonic significance[J]. Geological Bulletin of China, 2020, 39(5): 647-658.

Geochemistry and Nd-Hf isotopes of the Early Permian volcanic rocks in Hangwula of northern Alxa area and their tectonic significance

More Information
  • Volcanic rocks of Fangshankou Formation are widely distributed in Hangwula area on the northern side of Engger Us ophiolitic belt in the Alxa area.These rocks are very essential for interpreting tectonic evolution of the southern part of Central Asian orogenic belt.Early Permian rocks in this stratum mainly consist of grayish green andesite and andesitic breccia lava, partly with agglomerate.The andesite has SiO2 content of 54.23%~60.81%, Al2O3 content of 13.67%~15.96%, MgO content of 4.26%~5.76%, and Mg# of 42~50 with the content of Na2O(2.21%~3.48%)less than that of K2O(2.51%~3.49%).These rocks also have high TFe2O3(7.98%~11.24%)and low CaO(2.52%~3.36%)as well as TiO2(0.75%~1.32%).They should be peraluminous calc-alkaline rocks.Andesite samples are enriched in light rare earth elements(LREE)and depleted in heavy rare earth elements(HREE).The differentiation between LREE and HREE is not obvious with(La/Yb)N equal to 3.73~9.86.Samples show negative Eu anomalies with δEu being 0.52~0.75.The chondrite-normalized REE patterns are similar to E-MORB.The samples of andesite are enriched in such elements as Rb and K and depleted in such elements as Nb, Ta and Ti.What's more, they have εNd(t)=-4.3~-14.2 and εHf(t)=-19.8~+1.4.These characteristics suggest that andesites were sourced from mixing of the mantle and the crust and formed in intraplate rift.Considering a lot of geological materials related to this area, the authors conclude that the branch of the PAO(Paleo-Asian Ocean)represented by Engger Us ophiolitic belt had been closed before Late Carboniferous, and that, during Late Carboniferous to Early Permian, magmatic activities in the study area occurred in an intraplate extensional setting.

  • 加载中
  • [1] Wan B, Li S H, Xiao W J, et al.Where and when did the Paleo-Asian ocean form?[J].Precambrian Research, 2018, 317:241-252. doi: 10.1016/j.precamres.2018.09.003

    CrossRef Google Scholar

    [2] Windley B F, Alexeiev D, Xiao W J, et al.Tectonic models for accretion of the central asian orogenic belt[J].Geol.Soc.London, 2007, 164:31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [3] Jahn B M, Wu F Y, Chen B.Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J].Transactions of the Royal Society of Edinburgh:Earth Sciences, 2000, 91:181-193. doi: 10.1017/S0263593300007367

    CrossRef Google Scholar

    [4] Sengör A M C, Natalin B A, Burtman V S.Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J].Nature, 1993, 364:299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [5] Badarch G, Dickson C W, Windley B F.A new terrane subdivision for Mongolia:implications for the Phanerozoic crustal growth of Central Asia[J].Journal of Asian Earth Sciences, 2002, 21:87-110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [6] Lehmann J, Schulmann K, Lexa O, et al.Structural constraints on the evolution of the Central Asian orogenic belt in SW mongolia[J].American Journal of Science, 2010, 310:575-628. doi: 10.2475/07.2010.02

    CrossRef Google Scholar

    [7] Xiao W J, Windley B F, Sun S, et al.A tale of amalgamation of three Permo-Triassic collage systems in central Asia:oroclines, sutures, and terminal accretion[J].Annual Review of Earth and Planetary Sciences, 2015, 43:477-507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [8] Xiao W J, Windley B F, Han C M, et al.Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J].Earth Science Reviews, 2017, 186:94-128.

    Google Scholar

    [9] 左国朝, 张淑玲, 何国琦, 等.北山地区早古生代板块构造特征[J].地质科学, 1990, 4:305-314, 411.

    Google Scholar

    [10] 吴泰然, 何国琦.阿拉善地块北缘的蛇绿混杂岩带及其大地构造意义[J].现代地质, 1992, 6(3):286-296.

    Google Scholar

    [11] 吴泰然, 何国琦.内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J].地质学报, 1993, (2):97-108.

    Google Scholar

    [12] 王廷印, 王金荣, 王士政.阿拉善北部恩格尔乌苏蛇绿混杂岩带的发现及其构造意义[J].兰州大学学报, 1992, (2):194-196. doi: 10.3321/j.issn:0455-2059.1992.02.037

    CrossRef Google Scholar

    [13] 王廷印, 刘金坤, 王士政, 等.阿拉善北部中蒙边界地区晚古生代拉伸作用及构造岩浆演化[J].中国区域地质, 1993, (4):317-327.

    Google Scholar

    [14] 王廷印.阿拉善地区古生代陆壳的形成和演化[M].兰州:兰州大学出版社, 1994.

    Google Scholar

    [15] Han B F, Wang S G, Jahn B M, et al.Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J].Chemical Geology, 1997, 138:135-159. doi: 10.1016/S0009-2541(97)00003-X

    CrossRef Google Scholar

    [16] Charvet J, Shu L S, Laurent-Charvet S, et al.Palaeozoic tectonic evolution of the Tianshan belt, NW China[J].Science in China, 2011, 54:166-184.

    Google Scholar

    [17] Han B F, He G Q, Wang X C, et al.Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J].Earth Science Reviews, 2011, 109:74-93. doi: 10.1016/j.earscirev.2011.09.001

    CrossRef Google Scholar

    [18] 张文, 吴泰然, 冯继承, 等.阿拉善地块北缘古大洋闭合的时间制约:来自乌力吉花岗岩体的证据[J].地球科学, 2013, 43(8):1299-1311.

    Google Scholar

    [19] Feng J Y, Xiao W J, Windley B F, et al.Field geology, geochronology and geochemistry of mafc-ultramafc rocks from Alxa, China:implications for Late Permian accretionary tectonics in the southern Altaids[J].Journal of Asian Earth Sciences, 2013, 78:114-142. doi: 10.1016/j.jseaes.2013.01.020

    CrossRef Google Scholar

    [20] Zheng R G, Wu T R, Zhang W, et al.Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids:Geochronological and geochemical evidences from ophiolites[J].Gondwana Research, 2014, 25(2):842-858. doi: 10.1016/j.gr.2013.05.011

    CrossRef Google Scholar

    [21] Liu Q, Zhao G C, Han Y G, et al.Timing of the final closure of the PaleoAsian Ocean in the Alxa Terrane:constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J].Lithosphere, 2017, 274/275:19-30.

    Google Scholar

    [22] Song D F, Xiao W J, Collins A S, et al.Final subduction processes of the Paleo-Asian Ocean in the Alxa Tectonic Belt(NW China):Constraints from field and chronological data of Permian arc-related volcano-sedimentary rocks[J].Tectonics, 2018, 37:1658-1687. doi: 10.1029/2017TC004919

    CrossRef Google Scholar

    [23] Cleven N, Lin S, Guilmette C, et al.Petrogenesis and implications for tectonic setting of Cambrian suprasubduction-zone ophiolitic rocks in the central Beishan orogenic collage, Northwest China[J].Journal of Asian Earth Sciences, 2015, 113:369-390. doi: 10.1016/j.jseaes.2014.10.038

    CrossRef Google Scholar

    [24] 姜亭, 李玉宏, 陈高潮, 等.内蒙古西部额济纳旗及邻区上石炭统-下二叠统阿木山组火山岩的地球化学特征[J].地质通报, 2011, 30(6):932-942. doi: 10.3969/j.issn.1671-2552.2011.06.015

    CrossRef Google Scholar

    [25] 党犇, 赵虹, 林广春, 等.内蒙古西部银根-额济纳旗盆地及邻区二叠纪火山岩的地球化学特征和构造环境[J].地质通报, 2011, 30(6):923-931. doi: 10.3969/j.issn.1671-2552.2011.06.014

    CrossRef Google Scholar

    [26] 曾勇.内蒙古阿拉善哈日敖日布格气象一带晚古生代花岗岩地球化学特征及构造意义[D].中国地质大学(北京)硕士学位论文, 2014.http://cdmd.cnki.com.cn/Article/CDMD-11415-1014233970.htm

    Google Scholar

    [27] 尹海权.内蒙古阿拉善地区北部古生代沉积及其大地构造演化特征[D].中国地质大学(北京)博士学位论文, 2016.http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067686.htm

    Google Scholar

    [28] 宋嘉佳.阿拉善地块北部雅干断裂带周缘晚古生代花岗岩体特征[D].中国地质大学(北京)硕士学位论文, 2017.http://cdmd.cnki.com.cn/Article/CDMD-11415-1017129926.htm

    Google Scholar

    [29] Liu Q, Zhao G C, Han Y G, et al.Geochronology and Geochemistry of Paleozoic to Mesozoic Granitoids in Western Inner Mongolia, China:Implications for the Tectonic Evolution of the Southern Central Asian Orogenic Belt[J].The Journal of Geology, 2018, 126(4):451-471. doi: 10.1086/697690

    CrossRef Google Scholar

    [30] Fei M M, Pan M, Xie C L, et al.Timing and tectonic settings of the Late Paleozoic intrusions in the Zhusileng, northern Alxa:implication for the metallogeny[J].Geosciences Journal, 2019, 23(1):37-57. doi: 10.1007/s12303-018-0018-z

    CrossRef Google Scholar

    [31] 郑亚东, 张青.内蒙古亚干变质核杂岩与伸展拆离断层[J].地质学报, 1993, 67(4):301-309.

    Google Scholar

    [32] Webb L E, Graham S A, Johnson C L, et al.Occurrence, age, and implications of the Yagan-Onch Hayrhan metamorphic core complex, southern Mongolia[J].Geology.1999, 27(2):143-146. doi: 10.1130/0091-7613(1999)027<0143:OAAIOT>2.3.CO;2

    CrossRef Google Scholar

    [33] 王涛, 郑亚东, 李天斌, 等.中蒙边界区亚干变质核杂岩的组成与结构[J].地质科学, 2002, 37(1):79-85. doi: 10.3321/j.issn:0563-5020.2002.01.009

    CrossRef Google Scholar

    [34] 杨立业.内蒙古阿拉善北部二叠系地质特征与构造演化[D].中国地质大学(北京)硕士学位论文, 2014.http://cdmd.cnki.com.cn/Article/CDMD-11415-1014233806.htm

    Google Scholar

    [35] Wu T R, He G Q, Zhang C.On Palaeozoic Tectonics in the Alxa Region, Inner Mongolia, China[J].Acta Geologica Sinica, 1998, 72(3):256-263.

    Google Scholar

    [36] Bao Z A, Zong C L, Fang L R, et al.Determination of Hf-Sr-Nd isotopic ratios by MC-ICP-MS using rapid acid digestion after flux-free fusion in geological materials[J].Acta Geochimica, 2018, 37(2):244-256. doi: 10.1007/s11631-017-0207-x

    CrossRef Google Scholar

    [37] Lebas M J, Lemaitre R W, Strekeisen A, et al.A chemical classification of volcanic rocks based on the total alkalisilica diagram[J].Journal of Petroloy, 1986, 27(3):745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    [38] Winchester J A, Floyd P A.Geochemical discrimination of different magma series their differentiation products using immobile elements[J].Chem.Geol., 1977, 20:325-345. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [39] Rickwood P C.Boundary lines within petrologic diagrams which use oxides of major and minor elements[J].Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [40] Maniar P D, Piccolip M.Tectonic discrimination of granitoids.The Geological Society of America of Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [41] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [42] 唐功建, 王强, 赵振华, 等.西天山东塔尔别克金矿区安山岩LA-ICP-MS锆石U-Pb年代学、元素地球化学与岩石成因[J].岩石学报, 2009, 25(6):1341-1352.

    Google Scholar

    [43] Chen L, Zhao Z F.Origin of continental arc andesites:The composition of source rocks is the key[J].Journal of Asian Earth Sciences, 2017, 145:217-232. doi: 10.1016/j.jseaes.2017.04.012

    CrossRef Google Scholar

    [44] Petford N, Atherton M.Na-rich Partial Melts from Newly Underplated Basaltic Crust:the Cordillera Blanca Batholith, Peru[J].Journal of Petrology, 1996, 37(6):1491-1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    [45] Jung S, Hoernes S, Mezger K.Synorogenic melting of mafic lower crust:constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites(Damara orogen, Namibia)[J].Contributions to Mineralogy & Petrology, 2002, 143(5):551-566.

    Google Scholar

    [46] Bonin B.Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J].Lithos, 2004, 78(1/2):1-24.

    Google Scholar

    [47] Lee C T A, Lee T C, Wu C T.Modeling the compositional evolution of recharging, evacuating, and fractionating(REFC)magma chambers:Implications for differentiation of arc magmas[J].Geochimica et Cosmochimica Acta, 2014, 143:8-22. doi: 10.1016/j.gca.2013.08.009

    CrossRef Google Scholar

    [48] Guo F, Nakamuru E, Fan W M, et al.Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China[J].Journal of Petrology, 2007, 48(4):661-692. doi: 10.1093/petrology/egl077

    CrossRef Google Scholar

    [49] 卿敏, 唐明国, 葛良胜, 等.内蒙古苏右旗毕力赫金矿区安山岩LA-ICP-MS锆石U-Pb年龄、元素地球化学特征及其形成的构造环境[J].岩石学报, 2012, 28(2):514-524.

    Google Scholar

    [50] 贺健, 李龙明, 任升莲, 等.福建政和粗面安山岩的年代学、地球化学特征:对中国东南沿海晚中生代挤压-伸展构造的指示[J].地质科学, 2017, 52(2):592-615.

    Google Scholar

    [51] Kelemen P B.Genesis of high Mg# andesites and the continental crust[J].Contributions to Mineralogy & Petrology, 1995, 120(1):1-19.

    Google Scholar

    [52] 林木森, 彭松柏, 乔卫涛.滇西腾冲更新世粗面安山岩Ar-Ar年代学、地球化学特征及其构造意义[J].岩石学报, 2017, 33(10):3137-3146.

    Google Scholar

    [53] 纪政, 葛文春, 杨浩, 等.大兴安岭中段晚三叠世安第斯型安山岩:蒙古-鄂霍茨克大洋板片南向俯冲作用的产物[J].岩石学报, 2018, 34(10):2917-2930.

    Google Scholar

    [54] Atherton M P, Petford N.Generation of sodium-rich magmas from newly underplated basaltic crust[J].Nature, 1993, 362(6416):144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [55] Rudnick R L, Gao S.Composition of the Continental Crust[J].Treatise on Geochemistry, 2003, 3:1-64.

    Google Scholar

    [56] 夏林圻, 夏祖春, 徐学义, 等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 2007, (1):77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011

    CrossRef Google Scholar

    [57] Wang X C, Wilde S A, Xu B, et al.Origin of arc-like continental basalts:Implications for deep-Earth fluid cycling and tectonic discrimination[J].Lithos, 2016, 261:5-45. doi: 10.1016/j.lithos.2015.12.014

    CrossRef Google Scholar

    [58] Taylor S R, McLennan S M.The Continental Crust:Its Composition and Evolution[J].The Journal of Geology, 1986, 94(4):632-633. doi: 10.1086/629067

    CrossRef Google Scholar

    [59] Fitton J G, Saunders A D, Norry M J, et al.Thermal and chemical structure of the Iceland plume[J].Earth and Planetary Science Letters, 1997, 153:197-208. doi: 10.1016/S0012-821X(97)00170-2

    CrossRef Google Scholar

    [60] Baker J A, Menzies M A, Thirlwall M F, et al.Petrogenesis of Quaternary Intraplate Volcanism, Sana'a, Yemen:Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization[J].Journal of Petrology, 1997, 38(10):1359-1390. doi: 10.1093/petroj/38.10.1359

    CrossRef Google Scholar

    [61] Mecdonald R.Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa[J].Journal of Petrology, 2001, 42(5):877-900. doi: 10.1093/petrology/42.5.877

    CrossRef Google Scholar

    [62] Campbell I H, Griffiths R W.The Changing Nature of Mantle Hotspots through Time:Implications for the Chemical Evolution of the Mantle[J].Journal of Geology, 1992, 100(5):497-523. doi: 10.1086/629605

    CrossRef Google Scholar

    [63] Campbell I H, Griffiths R W.The evolution of the mantle's chemical structure[J].Lithos, 1993, 30(3/4):389-399.

    Google Scholar

    [64] 吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, (2):185-220.

    Google Scholar

    [65] 刘欣雨, 张旗, 张成立.全球新生代安山岩构造环境有关问题探讨[J].地质科学, 2017, 52(3):649-667.

    Google Scholar

    [66] Wood D A.The application of a Th, Hf, Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J].Earth & Planetary Science Letters, 1980, 50(1):11-30.

    Google Scholar

    [67] Meschede M.A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J].Chem.Geol., 1986, 56(3):207-218.

    Google Scholar

    [68] Pearce J A.Trace element characteristics of lavas from destructive plate boundaries[J].Orogenic Andesites and Related Rocks, 1982:525-548.

    Google Scholar

    [69] 吴元伟.北山与银额地区晚古生代构造-沉积背景对比研究[D].长安大学硕士学位论文, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10710-1014071000.htm

    Google Scholar

    [70] 李永军, 李甘雨, 佟丽莉, 等.玄武岩类形成的大地构造环境Ta、Hf、Th、La、Zr、Nb比值对比判别[J].地球科学与环境学报, 2015, 37(3):14-21. doi: 10.3969/j.issn.1672-6561.2015.03.004

    CrossRef Google Scholar

    [71] 党犇, 赵虹, 林广春, 等.阿拉善北部地区石炭纪火山岩岩石成因及构造意义[J].地球科学(中国地质大学学报), 2013, 38(5):963-974.

    Google Scholar

    [72] 郑荣国, 李锦轶, 刘建峰.阿拉善地块北缘地区阿木山组火山岩时代:锆石U-Pb定年证据[J].中国地质, 2017, 44(3):612-613.

    Google Scholar

    [73] 安屹.甘肃北山东部地区双峰式火山岩地球化学特征及构造意义研究[D].兰州大学硕士学位论文, 2018.http://cdmd.cnki.com.cn/Article/CDMD-10730-1018979667.htm

    Google Scholar

    [74] Su B X, Qin K Z, Sakyi P A, et al.Geochemistry and geochronology of acidic rocks in the Beishan region, NW China:Petrogenesis and tectonic implications[J].Journal of Asian Earth Sciences, 2011, 41(1):1-43. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [75] Li S, Wilde S A, Wang T.Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China:Petrogenesis and tectonic implications[J].Lithos, 2013, 179:99-119. doi: 10.1016/j.lithos.2013.08.002

    CrossRef Google Scholar

    [76] Pang C J, Wang X C, Xu B, et al.Late Carboniferous N-MORB-type basalts in central Inner Mongolia, China:Products of hydrous melting in an intraplate setting?[J].Lithos, 2016, 261:55-71. doi: 10.1016/j.lithos.2016.05.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(628) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint