2020 Vol. 39, No. 6
Article Contents

HONG Wentao, YU Minggang, YANG Zhuliang, XING Guangfu. Cenozoic tectonic units and their stratigraphic characteristics of southern west Pacific region: Implication for Himalayan orogeny[J]. Geological Bulletin of China, 2020, 39(6): 839-860.
Citation: HONG Wentao, YU Minggang, YANG Zhuliang, XING Guangfu. Cenozoic tectonic units and their stratigraphic characteristics of southern west Pacific region: Implication for Himalayan orogeny[J]. Geological Bulletin of China, 2020, 39(6): 839-860.

Cenozoic tectonic units and their stratigraphic characteristics of southern west Pacific region: Implication for Himalayan orogeny

  • In this paper, based on the study of tectono-stratigraphic characteristics of some representative tectonic units of southern Western Pacific region which include South China, Southwest Japan, Philippines, and East Indonesia, the authors present a review of the age, periods and background of Himalayan orogeny.Within the study region, after the late Yanshanian orogeny, most of regions were uplifted with the absence of Paleocene to lower Eocene strata.Cenozoic strata generally cover the pre-Cenozoic basement in angular unconformity form.According to stratigraphic and volcano-sedimentary characteristics of different tectonic units, they can be divided into three structural layers, i.e., Eocene or Eocene-Lower Oligocene(E2 or E2-E31), Miocene or Upper Oligocene-lowest Miocene(N1/E3-N11)and Pliocene till now(N2-Q).The above three structural layers are in contact with two regional angular unconformities, and correspond to the early Himalayan orogeny(E3-N11, 33~20 Ma)and the late Himalayan orogeny(N2, 5.3~2.6 Ma), respectively, with he former being most intense.In different regions, both orogenic movements were usually related to the collision of arcs or detached micro-terranes towards the edge of the Eurasian plate.Obviously, Himalayan orogeny was accretionary orogenesis rather than collision between two continents, and was controlled by changes in the direction and rate of movement of the Pacific and Indian Ocean-Australian plates.Between the episodic tectonic events, it was an intensive extensional setting, which led to the flattening of the palaeocathysian mountain system and the opening of the marginal seas.

  • 加载中
  • [1] 黄汲清.中国区域地质的特征[J].地质学报, 1954, 34(3):217-244.

    Google Scholar

    [2] Ren J S, Chen T.Tectonic evolution of the continental lithosphere in eastern China and adjacent areas[J].Journal of.Southeast Asian Earth Science, 1989, 3:17-27. doi: 10.1016/0743-9547(89)90006-8

    CrossRef Google Scholar

    [3] 贾承造, 何登发, 陆洁民.中国喜马拉雅运动的期次及其动力学背景[J].石油与天然气地质, 2004, 25(2):121-125. doi: 10.3321/j.issn:0253-9985.2004.02.001

    CrossRef Google Scholar

    [4] Amante C, Eakins B W.ETOPO11 Arc-Minute Global Relief Model: Procedures, DataSources and Analysis.NOAA Technical Memorandum NESDIS NGDC-24.National Geophysical Data Center, NOAA[EB/OL](2009-08)[2020-02-09]doi: 10.7289/V5C8276M[access date].https://www.ngdc.noaa.gov/mgg/global/global.html.2009.

    Google Scholar

    [5] 郑洪波, 魏晓椿, 王平, 等.长江的前世今生[J].中国科学:地球科学, 2017, 47:385-393.

    Google Scholar

    [6] 任纪舜, 赵磊, 徐芹芹, 等.中国的全球构造位置和地球动力系统[J].地质学报, 2016, 9:2100-2108. doi: 10.3969/j.issn.0001-5717.2016.09.002

    CrossRef Google Scholar

    [7] 蔡周荣, 刘维亮, 万志峰, 等.南海北部新生代构造运动厘定及与油气成藏关系探讨[J].海洋通报, 2010, 29(2):161-165. doi: 10.3969/j.issn.1001-6392.2010.02.007

    CrossRef Google Scholar

    [8] 李楠, 李巍然, 龙海燕.南黄海盆地北部坳陷正反转构造[J].海洋地质与第四纪地质, 2013, 33(3):95-100.

    Google Scholar

    [9] 索艳慧, 李三忠, 曹现志, 等.中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J].地学前缘, 2017, 24(4):249-267.

    Google Scholar

    [10] 李廷栋, 莫杰.中国滨太平洋构造域构造格架和东海地质演化[J].海洋地质与第四纪地质, 2002, 22(4):1-6.

    Google Scholar

    [11] Hall R.Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions, model andanimations[J].Journal of Asian Earth Sciences, 2002, 20(4):353-431. doi: 10.1016/S1367-9120(01)00069-4

    CrossRef Google Scholar

    [12] Hall R.Late Jurassic-Cenozoic reconstructions of the Indonesian region and the IndianOcean[J].Tectonophysics, 2012, 570:1-41.

    Google Scholar

    [13] 姚伯初, 万玲, 吴能友.大南海地区新生代板块构造活动[J].中国地质, 2004, 31(2):113-122. doi: 10.3969/j.issn.1000-3657.2004.02.001

    CrossRef Google Scholar

    [14] 李三忠, 余珊, 赵淑娟, 等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质, 2013, 33(3):65-94.

    Google Scholar

    [15] 李三忠, 臧艺博, 王鹏程, 等.华南中生代构造转换和古太平洋俯冲启动[J].地学前缘, 2017, 24(4):213-225.

    Google Scholar

    [16] 李三忠, 索艳慧, 李玺瑶, 等.西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J].科学通报, 2018, 63:1550.

    Google Scholar

    [17] Lee T Y, Lawver L A.Cenozoic plate reconstruction of SoutheastAsia[J].Tectonophysics, 1995, 251(1/4):85-138.

    Google Scholar

    [18] Monnier C, Girardeau J, Maury R C, et al.Back-arc basin origin for the East Sulawesi ophiolite(eastern Indonesia)[J].Geology, 1995, 23(9):851-854. doi: 10.1130/0091-7613(1995)023<0851:BABOFT>2.3.CO;2

    CrossRef Google Scholar

    [19] Hill K C, Lucas K, Bradey K.Structural styles in the Papuan Fold Belt, Papua New Guinea:constraints from analoguemodelling[J].Geological Society, London, Special Publications, 2010, 348(1):33-56 doi: 10.1144/SP348.3

    CrossRef Google Scholar

    [20] 马文璞, 陆松年, 王果胜.日本在亚洲前沿的构造定位及其对中国东部区域构造的含义[J].地质通报, 2003, 22(3):192-199. doi: 10.3969/j.issn.1671-2552.2003.03.008

    CrossRef Google Scholar

    [21] Wakita K.Geology of the Japanese Islands: an outline[C]//Natural Heritage of Japan.Springer, Cham., 2018: 9-17.

    Google Scholar

    [22] Isozaki Y, Aoki K, Nakama T, et al.New insight into a subduction-related orogen:a reappraisal of the geotectonic framework and evolution of the JapaneseIslands[J].Gondwana Research, 2010, 18(1):82-105. doi: 10.1016/j.gr.2010.02.015

    CrossRef Google Scholar

    [23] Taira A.Tectonic evolution of the Japanese island arcsystem[J].Annual Review of Earth and Planetary Sciences, 2001, 29(1):109-134. doi: 10.1146/annurev.earth.29.1.109

    CrossRef Google Scholar

    [24] Wakita K.Geology and tectonics of Japanese islands:a review-the key to understanding the geology ofAsia[J].Journal of Asian Earth Sciences, 2013, 72:75-87. doi: 10.1016/j.jseaes.2012.04.014

    CrossRef Google Scholar

    [25] Imaoka T, Kiminami K, Nishida K, et al.K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster:Implications for Eocene-Oligocene thermo-tectonicreactivation[J].Journal of Asian Earth Sciences, 2011, 40(2):509-533. doi: 10.1016/j.jseaes.2010.10.002

    CrossRef Google Scholar

    [26] Uyeda S, Miyashiro A.Plate tectonics and the Japanese Islands:asynthesis[J].Geological Society of America Bulletin, 1974, 85(7):1159-1170. doi: 10.1130/0016-7606(1974)85<1159:PTATJI>2.0.CO;2

    CrossRef Google Scholar

    [27] Saito T, Okada Y, Fujisaki W, et al.Accreted Kula plate fragment at 94 Ma in the Yokonami-melange, Shimanto-belt, Shikoku, Japan[J].Tectonophysics, 2014, 623(2):136-146.

    Google Scholar

    [28] Kimura G, Kitamura Y, Yamaguchi A, et al.Origin of the early Cenozoic belt boundary thrust and Izanagi-Pacific ridge subduction in the western Pacific margin[J].Island Arc, 2019, 28(5):e12320.

    Google Scholar

    [29] Aoki K, Itaya T, Shibuya T, et al.The youngest blueschist belt in SW Japan:implication for the exhumation of the Cretaceous Sanbagawa high-P/T metamorphicbelt[J].Journal of Metamorphic Geology, 2008, 26(5):583-602. doi: 10.1111/j.1525-1314.2008.00777.x

    CrossRef Google Scholar

    [30] Aoki K, Kitajima K, Masago H, et al.Metamorphic P-T-time history of the Sanbagawa belt in central Shikoku, Japan and implications for retrograde metamorphism during exhumation[J].Lithos, 2009, 113(3/4):393-407.

    Google Scholar

    [31] Aoki K, Maruyama S, Isozaki Y, et al.Recognition of the Shimanto HP metamorphic belt within the traditional Sanbagawa HP metamorphic belt:New perspectives of the Cretaceous-Paleogene tectonics in Japan[J].Journal of Asian Earth Sciences, 2011, 42(3):355-369. doi: 10.1016/j.jseaes.2011.05.001

    CrossRef Google Scholar

    [32] Hara H, Kimura K.Metamorphic and cooling history of the Shimanto accretionary complex, Kyushu, Southwest Japan:Implications for the timing of out of sequencethrusting[J].Island Arc, 2008, 17(4):546-559. doi: 10.1111/j.1440-1738.2008.00636.x

    CrossRef Google Scholar

    [33] Mahony S H, Wallace L M, Miyoshi M, et al.Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan[J].GSA Bulletin, 2011, 123(11/12):2201-2223.

    Google Scholar

    [34] Raimbourg H, Famin V, Palazzin G, et al.Tertiary evolution of the Shimanto belt(Japan):A large-scale collision in EarlyMiocene[J].Tectonics, 2017, 36(7):1317-1337. doi: 10.1002/2017TC004529

    CrossRef Google Scholar

    [35] Sdrolias M, Roest W R, Müller R D.An expression of Philippine Sea plate rotation:the Parece Vela and Shikokubasins[J].Tectonophysics, 2004, 394(1/2):69-86.

    Google Scholar

    [36] Jolivet L, Tamaki K, Fournier M.Japan Sea, opening history and mechanism:Asynthesis[J].Journal of Geophysical Research:Solid Earth, 1994, 99(B11):22237-22259. doi: 10.1029/93JB03463

    CrossRef Google Scholar

    [37] Kino Y.Geoglogy of the Obi district.With Geological Sheet Map at 1: 50000[J].Geological Survey of Japan, 1959: 1-5(in Japanese with English abstract).

    Google Scholar

    [38] Yamauchi, Sawada, Y, Takasu, et al.Geology of the Saigo distrct.With geological sheet map 1: 50000, Saigo[J].Geological Survey of Japan, AIST, 2009(in Japanese with English abstract 5p).

    Google Scholar

    [39] Furukawa Y, Tatsumi Y.Melting of a subducting slab and production of high-mg andesite magmas:Unusual magmatism in SW Japan at 13~15 Ma[J].Geophysical Research Letters, 1999, 26(15):2271-2274. doi: 10.1029/1999GL900512

    CrossRef Google Scholar

    [40] Tatsumi Y, Ishikawa N, Anno K, et al.Tectonic setting of high-Mg andesite magmatism in the SW Japan arc:K-Ar chronology of the Setouchi volcanicbelt[J].Geophysical Journal International, 2001, 144(3):625-631. doi: 10.1046/j.1365-246x.2001.01358.x

    CrossRef Google Scholar

    [41] Itoh Y, Nagasaki Y.Crustal shortening of southwest Japan in the lateMiocene[J].Island Arc, 1996, 5(3):337-353. doi: 10.1111/j.1440-1738.1996.tb00035.x

    CrossRef Google Scholar

    [42] Sato H.The relationship between late Cenozoic tectonic events and stress field and basin development in northeastJapan[J].Journal of Geophysical Research:Solid Earth, 1994, 99(B11):22261-22274. doi: 10.1029/94JB00854

    CrossRef Google Scholar

    [43] Taira A, Okada H, Whitaker J H, et al.The Shimanto Belt of Japan:cretaceous-lower Miocene active-marginsedimentation[J].Geological Society, London, Special Publications, 1982, 10(1):5-26. doi: 10.1144/GSL.SP.1982.010.01.01

    CrossRef Google Scholar

    [44] Xu S M, Ye Q, Li S, et al.Sequential patterns in Cenozoic marginal basins of the NorthwestPacific[J].Geological Journal, 2016, 51:387-415.

    Google Scholar

    [45] Yumul Jr G P, Dimalanta C B, Tamayo Jr R A, et al.Collision, subduction and accretion events in the Philippines:a synthesis[J].Island Arc, 2003, 12(2):77-91. doi: 10.1046/j.1440-1738.2003.00382.x

    CrossRef Google Scholar

    [46] Gabo J A S, Dimalanta C B, Asio M G S, et al.Geology and geochemistry of the clastic sequences from Northwestern Panay(Philippines):Implications for provenance and geotectonic setting[J].Tectonophysics, 2009, 479(1/2):111-119.

    Google Scholar

    [47] Yumul Jr G P, Dimalanta C B, Marquez E J, et al.Onland signatures of the Palawan micro continental block and Philippine mobile belt collision and crustal growth process:a review[J].Journal of Asian Earth Sciences, 2009, 34(5):610-623. doi: 10.1016/j.jseaes.2008.10.002

    CrossRef Google Scholar

    [48] Yumul Jr G P, Dimalanta C B, Maglambayan V B, et al.Tectonic setting of a composite terrane:A review of the Philippine island arc system[J].Geosciences Journal, 2008, 12(1):7.

    Google Scholar

    [49] Canto A P B, Padrones J T, Concepcion R A B, et al.Geology of northwestern Mindoro and its offshore islands:Implications for terrane accretion in west Central Philippines[J].Journal of Asian Earth Sciences, 2012, 61:78-87. doi: 10.1016/j.jseaes.2012.08.006

    CrossRef Google Scholar

    [50] Concepcion R A B, Dimalanta C B, Yumul G P, et al.Petrography, geochemistry, and tectonics of a rifted fragment of Mainland Asia:evidence from the Lasala Formation, Mindoro Island, Philippines[J].International Journal of Earth Sciences, 2012, 101(1):273-290. doi: 10.1007/s00531-011-0643-5

    CrossRef Google Scholar

    [51] Walia M, Knittel U, Suzuki S, et al.No Paleozoic metamorphics in Palawan(the Philippines)?-Evidence from single grain U-Pb dating of detritalzircons[J].Journal of Asian Earth Sciences, 2012, 52:134-145. doi: 10.1016/j.jseaes.2012.03.005

    CrossRef Google Scholar

    [52] Aurelio M A, Peña R E.Geology and mineral resources of thePhilippines[J].Mines and Geosciences Bureau, Department of Environment and Natural Resources, Quezon City, 2004:391.

    Google Scholar

    [53] Aurelio M A, Peña R E, Taguibao K J L.Sculpting the Philippine archipelago since the Cretaceous through rifting, oceanic spreading, subduction, obduction, collision and strike-slip faulting:Contribution to IGMA5000[J].Journal of Asian Earth Sciences, 2013, 72:102-107. doi: 10.1016/j.jseaes.2012.10.007

    CrossRef Google Scholar

    [54] Evans C A, Casteneda G, Franco H.Geochemical complexities preserved in the volcanic rocks of the Zambales ophiolite, Philippines[J].Journal of Geophysical Research:Solid Earth, 1991, 96(B10):16251-16262. doi: 10.1029/91JB01488

    CrossRef Google Scholar

    [55] Dimalanta C B, Yumul G P.Magmatic and amagmatic contributions to crustal growth in the Philippine island arc system:Comparison of the Cretaceous and post-Cretaceousperiods[J].Geosciences Journal, 2006, 10(3):321. doi: 10.1007/BF02910373

    CrossRef Google Scholar

    [56] Andal E S, Arai S, Yumul Jr G P.Complete mantle section of a slow-spreadingridge-derived ophiolite:An example from the Isabela ophiolite in the Philippines[J].Island Arc, 2005, 14(3):272-294. doi: 10.1111/j.1440-1738.2005.00471.x

    CrossRef Google Scholar

    [57] Guotana J M R, Payot B D, Dimalanta C B, et al.Arc and back arc geochemical signatures of the proto-Philippine Sea Plate:Insights from the petrography and geochemistry of the Samar Ophiolite volcanicsection[J].Journal of Asian Earth Sciences, 2017, 142:77-92. doi: 10.1016/j.jseaes.2016.07.031

    CrossRef Google Scholar

    [58] Encarnación J.Multiple ophiolite generation preserved in the northern Philippines and the growth of an island arccomplex[J].Tectonophysics, 2004, 392(1/4):103-130.

    Google Scholar

    [59] Ilao K A, Morley C K, Aurelio M A.3D seismic investigation of the structural and stratigraphic characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and their tectonic implications[J].Journal of Asian Earth Sciences, 2018, 154:213-237. doi: 10.1016/j.jseaes.2017.12.017

    CrossRef Google Scholar

    [60] Dimalanta C B, Ramos E G L, Yumul Jr G P, et al.New features from the Romblon Island Group:Key to understanding the arc-continent collision in CentralPhilippines[J].Tectonophysics, 2009, 479(1/2):120-129.

    Google Scholar

    [61] Yumul G P, Dimalanta C B, Tamayo R A, et al.Geology of the Zamboanga Peninsula, Mindanao, Philippines:an enigmatic South China continental fragment?[J].Geological Society, London, Special Publications, 2004, 226(1):289-312. doi: 10.1144/GSL.SP.2004.226.01.16

    CrossRef Google Scholar

    [62] Aurelio M A, Forbes M T, Taguibao K J L, et al.Middle to Late Cenozoic tectonic events in south and central Palawan(Philippines)and their implications to the evolution of the south-eastern margin of South China Sea:Evidence from onshore structural and offshore seismicdata[J].Marine and Petroleum Geology, 2014, 58:658-673. doi: 10.1016/j.marpetgeo.2013.12.002

    CrossRef Google Scholar

    [63] Aurelio M A, Barrier E, Rangin C, et al.The Philippine Fault in the late Cenozoic tectonic evolution of the Bondoc-Masbate-N.Leyte area, centralPhilippines[J].Journal of Southeast Asian Earth Sciences, 1991, 6(3/4):221-238.

    Google Scholar

    [64] 任纪舜, 王作勋, 陈炳蔚, 等.从全球看中国大地构造——中国及邻区大地构造图简要说明[M].北京:地质出版社, 1999.

    Google Scholar

    [65] Hall R, Wilson M E J.Neogene sutures in easternIndonesia[J].Journal of Asian Earth Sciences, 2000, 18(6):781-808. doi: 10.1016/S1367-9120(00)00040-7

    CrossRef Google Scholar

    [66] Charlton T R.Tertiary evolution of the eastern Indonesia collisioncomplex[J].Journal of Asian Earth Sciences, 2000, 18(5):603-631. doi: 10.1016/S1367-9120(99)00049-8

    CrossRef Google Scholar

    [67] Metcalfe I.Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of easternTethys[J].Journal of Asian Earth Sciences, 2013, 66:1-33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [68] Pubellier M, Morley C K.The basins of Sundaland(SE Asia):Evolution and boundaryconditions[J].Marine and Petroleum Geology, 2014, 58:555-578. doi: 10.1016/j.marpetgeo.2013.11.019

    CrossRef Google Scholar

    [69] Bergman S C, Coffield D Q, Talbot J P, et al.Tertiary tectonic and magmatic evolution of western Sulawesi and the Makassar Strait, Indonesia:evidence for a Miocene continent-continentcollision[J].Geological Society, London, Special Publications, 1996, 106(1):391-429. doi: 10.1144/GSL.SP.1996.106.01.25

    CrossRef Google Scholar

    [70] Wakita K, Sopaheluwakan J, Miyazaki K, et al.Tectonic evolution of the Bantimala complex, south Sulawesi, Indonesia[J].Geological Society, London, Special Publications, 1996, 106(1):353-364. doi: 10.1144/GSL.SP.1996.106.01.23

    CrossRef Google Scholar

    [71] Parkinson C.An outline of the petrology, structure and age of the Pompangeo Schist Complex of central Sulawesi, Indonesia[J].Island Arc, 1998, 7(1/2):231-245.

    Google Scholar

    [72] Kadarusman A, Massonne H J, van Roermund H, et al.PT evolution of eclogites andblueschists from the Luk Ulo Complex of central Java, Indonesia[J].International Geology Review, 2007, 49(4):329-356. doi: 10.2747/0020-6814.49.4.329

    CrossRef Google Scholar

    [73] Zahirovic S, Seton M, Müller R D.The Cretaceous and Cenozoic tectonic evolution of SoutheastAsia[J].Solid Earth, 2014, 5(1):227. doi: 10.5194/se-5-227-2014

    CrossRef Google Scholar

    [74] Smyth H, Hall R, Hamilton J, et al.East Java: Cenozoic basins, volcanoes and ancient basement[C]//Proceedings Indonesian Petroleum Association 31st Annual Convention, Jakarta, 2005: 251-226

    Google Scholar

    [75] Clements B, Hall R.Cretaceous to Late Miocene stratigraphic and tectonic evolution of West Java[C]//Proceedings Indonesian Petroleum Association 31st Annual Convention, Jakarta, 2007: 1-18

    Google Scholar

    [76] Ratman R, Suwarti T, Samodra H.Geologic map of Indonesia, Surabay Sheet; scale 1:1000000)[J].Geological Reseach and Development Centre, Indonesia, Bundung, 1998.

    Google Scholar

    [77] Gafoer S, Samodra H.Geologic map of Indonesia, Jakarta Sheet(scale 1:1000000)[J].Geological Reseach and Development Centre, Indonesia, Bundung, 1993.

    Google Scholar

    [78] Matthews S J, Bransden P J E.Late cretaceous and cenozoic tectono-stratigraphic development of the East Java Sea Basin, Indonesia[J].Marine and Petroleum Geology, 1995, 12(5):499-510. doi: 10.1016/0264-8172(95)91505-J

    CrossRef Google Scholar

    [79] Leterrier J, Yuwono Y S, Soeria-Atmadja R, et al.Potassic volcanism in central Java and south Sulawesi, Indonesia[J].Journal of Southeast Asian Earth Sciences, 1990, 4(3):171-187. doi: 10.1016/S0743-9547(05)80011-X

    CrossRef Google Scholar

    [80] Soeria-Atmadja R, Maury R C, Bellon H, et al.Tertiary magmatic belts in Java[J].Journal of Southeast Asian earth sciences, 1994, 9(1/2):13-27.

    Google Scholar

    [81] Van Leeuwen T, Allen C M, Elburg M, et al.The Palu Metamorphic Complex, NW Sulawesi, Indonesia:Origin and evolution of a young metamorphic terrane with links to Gondwana and Sundaland[J].Journal of Asian Earth Sciences, 2016, 115:133-152. doi: 10.1016/j.jseaes.2015.09.025

    CrossRef Google Scholar

    [82] Hennig J, Hall R, Armstrong R A.U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia:Extension-related metamorphism and magmatism during the early stages of mountainbuilding[J].Gondwana Research, 2016, 32:41-63. doi: 10.1016/j.gr.2014.12.012

    CrossRef Google Scholar

    [83] White L T, Hall R, Armstrong R A, et al.The geological history of the Latimojong region of western Sulawesi, Indonesia[J].Journal of Asian Earth Sciences, 2017, 138:72-91. doi: 10.1016/j.jseaes.2017.02.005

    CrossRef Google Scholar

    [84] Pigram C J, Supandjono S J B.Origin of the Sula platform, easternIndonesia[J].Geology, 1985, 13(4):246-248. doi: 10.1130/0091-7613(1985)13<246:OOTSPE>2.0.CO;2

    CrossRef Google Scholar

    [85] Villeneuve M, Gunawan W, Cornee J J, et al.Geology of the central Sulawesi belt(eastern Indonesia):constraints for geodynamicmodels[J].International Journal of Earth Sciences, 2002, 91(3):524-537. doi: 10.1007/s005310100228

    CrossRef Google Scholar

    [86] Sukamto, R, Samodra H, Santosa S.Geologic map of Indonesia, Manado Sheet(scale 1:1000000)[J].Geological Reseach and Development Centre, Indonesia, Bundung, 1994.

    Google Scholar

    [87] Sukamto R A B.Geologic map of Indonesia, Ujung Pandang Sheet(scale 1:1000000)[J].Geological Reseach and Development Centre, Indonesia, Bundung, 1975.

    Google Scholar

    [88] Parkinson C D, Miyazaki K, Wakita K, et al.An overview and tectonic synthesis of the pre-Tertiary very high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia[J].Island Arc, 1998, 7(1/2):184-200.

    Google Scholar

    [89] Monnier C, Girardeau J, Maury R C, et al.Back-arc basin origin for the East Sulawesi ophiolite(eastern Indonesia)[J].Geology, 1995, 23(9):851-854. doi: 10.1130/0091-7613(1995)023<0851:BABOFT>2.3.CO;2

    CrossRef Google Scholar

    [90] Kadarusman A, Miyashita S, Maruyama S, et al.Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia[J].Tectonophysics, 2004, 392(1/4):55-83.

    Google Scholar

    [91] Parkinson C.Emplacement of the East Sulawesi Ophiolite:evidence from subophiolite metamorphicrocks[J].Journal of Asian Earth Sciences, 1998, 16(1):13-28.

    Google Scholar

    [92] Wakita K, Sopaheluwakan J, Zulkarnain I, et al.Early Cretaceous tectonic events implied in the time-lag between the age of radiolarian chert and its metamorphic basement in the Bantimala area, South Sulawesi, Indonesia[J].Island Arc, 1994, 3(2):90-102. doi: 10.1111/j.1440-1738.1994.tb00097.x

    CrossRef Google Scholar

    [93] Priadi B, Polve M, Maury R C, et al.Tertiary and Quaternary magmatism in Central Sulawesi:chronological and petrological constraints[J].Journal of Southeast Asian Earth Sciences, 1994, 9(1/2):81-93.

    Google Scholar

    [94] Van Leeuwen T M.Stratigraphy and tectonic setting of the Cretaceous and Paleogene volcanic-sedimentary successions in northwest Sulawesi, Indonesia:implications for the Cenozoic evolution of Western and Northern Sulawesi[J].Journal of Asian Earth Sciences, 2005, 25(3):481-511. doi: 10.1016/j.jseaes.2004.05.004

    CrossRef Google Scholar

    [95] van Leeuwen T, Allen C M, Elburg M, et al.The Palu Metamorphic Complex, NW Sulawesi, Indonesia:Origin and evolution of a young metamorphic terrane with links to Gondwana and Sundaland[J].Journal of Asian Earth Sciences, 2016, 115:133-152. doi: 10.1016/j.jseaes.2015.09.025

    CrossRef Google Scholar

    [96] Sasajima S, Nishimura S, Hirooka K, et al.Paleomagnetic studies combined with fission-track datings on the western arc of Sulawesi, East Indonesia[J].Tectonophysics, 1980, 64(1/2):163-172.

    Google Scholar

    [97] Calvert S J, Hall R.Cenozoic evolution of the Lariang and Karama regions, North Makassar Basin, western Sulawesi, Indonesia[J].Petroleum Geoscience, 2007, 13(4):353-368.

    Google Scholar

    [98] Advokaat E L, Hall R, White L T, et al.Miocene to recent extension in NW Sulawesi, Indonesia[J].Journal of Asian Earth Sciences, 2017, 147:378-401. doi: 10.1016/j.jseaes.2017.07.023

    CrossRef Google Scholar

    [99] 陈友飞, 严钦尚, 许世远.苏北盆地沉积环境演变及其构造背景[J].地质科学, 1993:1-25.

    Google Scholar

    [100] 钱勤, 李坤英.苏北盆地玄武岩地质年龄及地层时代[J].火山地质与矿产, 1996, 17(1):86-93.

    Google Scholar

    [101] 李春昱.四川运动及其在中国之分布[J].地质论评, 1950, 15(Z2):135-156.

    Google Scholar

    [102] 江苏省地质矿产局.江苏省及上海市区域地质志[M].北京:地质出版社, 1984:315-329.

    Google Scholar

    [103] 徐田武, 王英民, 魏水建, 等.苏北盆地海安凹陷下白垩统层序地层和沉积相研究[J].天然气地球科学, 2008, 19(3):351-355.

    Google Scholar

    [104] 四川省地质矿产局.四川省区域地质志[M].北京:地质出版社, 1991:282-310.

    Google Scholar

    [105] 李楠, 李巍然, 龙海燕.南黄海盆地北部坳陷正反转构造[J].海洋地质与第四纪地质, 2013, 33(3):95-100.

    Google Scholar

    [106] 索艳慧, 李三忠, 曹现志, 等.中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J].地学前缘, 2017, 24(4):249-267.

    Google Scholar

    [107] 安徽省地质矿产局.安徽省区域地质志[M].北京:地质出版社, 1984:315-329.

    Google Scholar

    [108] 邵家骥, 黄姜侬.南京地区生代玄武岩的期次、层序及时代[J].地质论评, 1989, 35(2):97-106. doi: 10.3321/j.issn:0371-5736.1989.02.001

    CrossRef Google Scholar

    [109] 许汉奎.南京泗洪炭兽的发现及六合组、雨花台组的时代[J].地质学刊, 2010, (1):1-5. doi: 10.3969/j.issn.1674-3636.2010.01.1

    CrossRef Google Scholar

    [110] 钱勤.苏北盆地三垛组新探[J].地层学杂志, 1997, 21(4):275-280.

    Google Scholar

    [111] Encarnacion J P, Essene E J, Mukasa S B, et al.High-pressure and-temperature subophiolitic kyanite-garnet amphibolites generated during initiation of mid-Tertiary subduction, Palawan, Philippines[J].Journal of Petrology, 1995, 36(6):1481-1503.

    Google Scholar

    [112] Steuer S, Franke D, Meresse F, et al.Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea[J].Marine and Petroleum Geology, 2014, 58:644-657. doi: 10.1016/j.marpetgeo.2013.12.010

    CrossRef Google Scholar

    [113] Shao L, Cao L, Qiao P, et al.Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Seamargin[J].Earth and Planetary Science Letters, 2017, 477:97-107. doi: 10.1016/j.epsl.2017.08.019

    CrossRef Google Scholar

    [114] Suggate S M, Cottam M A, Hall R, et al.South China continental margin signature for sandstones and granites from Palawan, Philippines[J].Gondwana Research, 2014, 26(2):699-718. doi: 10.1016/j.gr.2013.07.006

    CrossRef Google Scholar

    [115] Dimalanta C B, Ramos E G L, Yumul Jr G P, et al.New features from the Romblon Island Group:Key to understanding the arc-continent collision in Central Philippines[J].Tectonophysics, 2009, 479(1/2):120-129.

    Google Scholar

    [116] Yumul Jr G P, Dimalanta C B, Marquez E J, et al.Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process:a review[J].Journal of Asian Earth Sciences, 2009, 34(5):610-623. doi: 10.1016/j.jseaes.2008.10.002

    CrossRef Google Scholar

    [117] Oda M, Chiyonobu S, Torii M, et al.Integrated magnet obiochronology of the Pliocene-Pleistocene Miyazaki succession, southern Kyushu, southwest Japan:Implications for an Early Pleistocene hiatus and defining the base of the Gelasian(P/P boundary type section)in Japan[J].Journal of Asian Earth Sciences, 2011, 40(1):84-97. doi: 10.1016/j.jseaes.2010.09.003

    CrossRef Google Scholar

    [118] Elburg M, van Leeuwen T, Foden J.Spatial and temporal isotopic domains of contrasting igneous suites in western and northern Sulawesi, Indonesia[J].Chemical Geology, 2003, 199(3/4):243-276.

    Google Scholar

    [119] Soeria-Atmadja R, Maury R C, Bellon H, et al.Tertiary magmatic belts in Java[J].Journal of Southeast Asian Earth Sciences, 1994, 9(1/2):13-27.

    Google Scholar

    [120] Lunt P, Burgon G, Baky A.The Pemali Formation of Central Java and equivalents:Indicators of sedimentation on an active platemargin[J].Journal of Asian Earth Sciences, 2009, 34(1):100-113.

    Google Scholar

    [121] Sakakibara M, Ota T.Metamorphic evolution of the Kamuikotan high-pressure and low-temperature metamorphic rocks in central Hokkaido, Japan[J].Journal of Geophysical Research:Solid Earth, 1994, 99(B11):22221-22235. doi: 10.1029/94JB00958

    CrossRef Google Scholar

    [122] 黄奇瑜.台湾岛的年龄[J].中国科学:地球科学, 2017, 47:394-405.

    Google Scholar

    [123] 刘景彦, 林畅松, 肖建新, 等.东海西湖凹陷第三系主要不整合面的特征、剥蚀量的分布及其意义[J].现代地质, 1999, (4):432-438.

    Google Scholar

    [124] 蔡周荣, 刘维亮, 万志峰, 等.南海北部新生代构造运动厘定及与油气成藏关系探讨[J].海洋通报, 2010, 29(2):161-165. doi: 10.3969/j.issn.1001-6392.2010.02.007

    CrossRef Google Scholar

    [125] Padrones J T, Tani K, Tsutsumi Y, et al.Imprints of late Mesozoic tectono-magmatic events on Palawan Continental Block in northern Palawan, Philippines[J].Journal of Asian Earth Sciences, 2017, 142:56-76. doi: 10.1016/j.jseaes.2017.01.027

    CrossRef Google Scholar

    [126] 董树文, 张岳桥, 李海龙, 等."燕山运动"与东亚大陆晚中生代多板块汇聚构造——纪念"燕山运动"90周年[J].中国科学:地球科学, 2019, 49:913-938.

    Google Scholar

    [127] Sdrolias M, Müller R D.Controls on back-arc basinformation[J].Geochemistry, Geophysics, Geosystems, 2006, 7.Q04016, doi:10.1029/2005GC001090.

    CrossRef Google Scholar

    [128] Jurdy D M.Relative plate motions and the formation of marginalbasins[J].Journal of Geophysical Research:Solid Earth, 1979, 84(B12):6796-6802. doi: 10.1029/JB084iB12p06796

    CrossRef Google Scholar

    [129] Harris R.Geodynamic patterns of ophiolites and marginal basins in the Indonesian and New Guinearegions[J].Geological Society, London, Special Publications, 2003, 218(1):481-505. doi: 10.1144/GSL.SP.2003.218.01.25

    CrossRef Google Scholar

    [130] Baldwin S L, Fitzgerald P G, Webb L E.Tectonics of the New Guinearegion[J].Annual Review of Earth and Planetary Sciences, 2012, 40:495-520. doi: 10.1146/annurev-earth-040809-152540

    CrossRef Google Scholar

    [131] Warren P Q, Cloos M.Petrology and tectonics of the Derewo metamorphic belt, west NewGuinea[J].International Geology Review, 2007, 49(6):520-553. doi: 10.2747/0020-6814.49.6.520

    CrossRef Google Scholar

    [132] Harris R, Kaiser J, Hurford A, et al.Thermal history of Australian passive margin cover sequences accreted to Timor during Late Neogene arc-continent collision, Indonesia[J].Journal of Asian Earth Sciences, 2000, 18(1):47-69.

    Google Scholar

    [133] Harris R.Rise and fall of the Eastern Great Indonesian arc recorded by the assembly, dispersion and accretion of the Banda Terrane, Timor[J].Gondwana Research, 2006, 10(3/4):207-231.

    Google Scholar

    [134] Standley C E, Harris R.Tectonic evolution of forearc nappes of the active Banda arc-continent collision:Origin, age, metamorphic history and structure of the Lolotoi Complex, EastTimor[J].Tectonophysics, 2009, 479(1/2):66-94.

    Google Scholar

    [135] Buchanan P G, Warburton J.The Influence of Pre-Existing Basin Architecture in the Development of the Papuan Fold and Thrust Belt: Implications for Petroleum Prospective[C]//Papua New Guinea(PNG)Petroleum Convention Proceedings, 1996.

    Google Scholar

    [136] Hill K C, Lucas K, Bradey K.Structural styles in the Papuan Fold Belt, Papua New Guinea:constraints from analoguemodelling[J].Geological Society, London, Special Publications, 2010, 348(1):33-56. doi: 10.1144/SP348.3

    CrossRef Google Scholar

    [137] 姚运生, 刘锁旺.从江汉洞庭盆地新生代以来的构造变形探讨华南地块与周缘板块的相互关系[J].地壳形变与地震, 2000, 20(4):41-49. doi: 10.3969/j.issn.1671-5942.2000.04.007

    CrossRef Google Scholar

    [138] Pubellier M, Morley C K.The basins of Sundaland(SE Asia):Evolution and boundaryconditions[J].Marine and Petroleum Geology, 2014, 58:555-578. doi: 10.1016/j.marpetgeo.2013.11.019

    CrossRef Google Scholar

    [139] Lunt P, Van Gorsel J T.Geohistory analysis of South Makassar[J].Berita Sedimentol, 2013, 28:14-24.

    Google Scholar

    [140] Kano K, Uto K, Ohguchi T.Stratigraphic review of Eocene to Oligocene successions along the eastern Japan Sea:Implication for early opening of the Japan Sea[J].Journal of Asian Earth Sciences, 2007, 30(1):20-32. doi: 10.1016/j.jseaes.2006.07.003

    CrossRef Google Scholar

    [141] Zhu B Q, W H F, C Y W, et al.Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia[J].Journal of Asian Earth Sciences, 2004, 24(2):163-175. doi: 10.1016/j.jseaes.2003.10.006

    CrossRef Google Scholar

    [142] 李三忠, 曹现志, 王光增, 等.太平洋板块中-新生代构造演化及板块重建[J].地质力学学报, 2019, 25(5):642-677.

    Google Scholar

    [143] 邱燕, 陈国能.华南大陆边缘新生代构造地貌演化机制研究[J].地学前缘, 2011, 18(1):32-38.

    Google Scholar

    [144] Zheng H B, Clift P D, Wang P, et al.Pre-Miocene birth of the Yangtze River[J].Proceedings of the National Academy of Sciences, 2013, 110(19):7556-7561. doi: 10.1073/pnas.1216241110

    CrossRef Google Scholar

    洪文涛, 邢光福, 杨祝良, 等.太平洋构造域南段1: 250万地质图.中国地质调查局南京地质调查中心, 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(2866) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint