2020 Vol. 39, No. 6
Article Contents

ZHANG Kexin, LI Yangchun, WANG Lijun, WANG Jiaxuan, XU Yadong, WANG Yonghe, XIN Houtian, ZHAO Xiaoming, YIN Fuguang, LI Zhipei, GU Yongchang, YANG Zhuliang, FU Junyu. The division of mélanges in the orogenic belt and its associated terminologies[J]. Geological Bulletin of China, 2020, 39(6): 765-782.
Citation: ZHANG Kexin, LI Yangchun, WANG Lijun, WANG Jiaxuan, XU Yadong, WANG Yonghe, XIN Houtian, ZHAO Xiaoming, YIN Fuguang, LI Zhipei, GU Yongchang, YANG Zhuliang, FU Junyu. The division of mélanges in the orogenic belt and its associated terminologies[J]. Geological Bulletin of China, 2020, 39(6): 765-782.

The division of mélanges in the orogenic belt and its associated terminologies

  • The area of orogenic belts in China covers nearly three-fifths of the land area.Multiple episodes of deformation during the tectonic evolution of orogenic belts, such as archipelagic ocean evolution, continental subduction-accretion and continental collision, caused diverse types of mélanges.Therefore, it is the key point and challenges to differentiate various types of mélanges and recognize the primary block-in-matrix fabric of the mélange on the basis of geological mapping.In this paper, the authors have made a brief introduction and exposition of the current concepts of mélange and mélange nomenclature, such as ophiolite, ophiolite mélange, subduction-accreation complex, complex, slice, superslice, non-Smith strata, tectonostratigraphy, ocean plate stratigraphy, subordinate suture zone and main suture zone.The authors divide the mélanges into three types:olistostrome(sedimentary mélange), tectonic mélange, and sedimentary-tectonic polygenetic mélange, based on the features of orogenic belts in China.Olistostrome(sedimentary mélange)was formed in an extensional environment during the early stage of the Wilson cycle.The other two were formed at the late stage in association with the evolution of oceanic crust subduction or continental collision.Subduction-accretion complex is the product of tectonic mélange as a result of subduction-accretion process in the subduction zone.

  • 加载中
  • [1] 潘桂棠, 肖庆辉, 尹福光, 等.中国大地构造图说明书(1:2500000)[M].北京:地质出版社, 2015.

    Google Scholar

    [2] 潘桂棠, 陆松年, 肖庆辉, 等.中国大地构造阶段划分与演化[J].地学前缘, 2016, 23(6):1-23.

    Google Scholar

    [3] 潘桂棠, 肖庆辉, 尹福光, 等.中国大地构造[M].北京:地质出版社, 2017.

    Google Scholar

    [4] 张克信, 何卫红, 徐亚东, 等.中国沉积大地构造图说明书(1:2500000)[M].北京:地质出版社, 2015.

    Google Scholar

    [5] 张克信, 何卫红, 徐亚东, 等.中国洋板块地层分布及构造演化[J].地学前缘, 2016, 23(6):24-30.

    Google Scholar

    [6] 张克信, 何卫红, 骆满生, 等.中国沉积岩建造与沉积大地构造演化[M].北京:地质出版社, 2017.

    Google Scholar

    [7] 张克信, 殷鸿福, 朱云海, 等.造山带混杂岩区地质填图理论、方法与实践——以东昆仑造山带为例[M].武汉:中国地质大学出版社, 2001.

    Google Scholar

    [8] 潘桂棠, 肖庆辉, 张克信, 等.大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义[J].地球科学, 2019, 44(5):1544-1561.

    Google Scholar

    [9] Hsü K J.Principles of melange and their bearing on the Franciscan-knoxville paradox[J].Geol.Soc.Amer.Bull., 1968, (79):1063-1074.

    Google Scholar

    [10] Raymond L A.Mélanges: Their Nature, Origin and Significance[M].Geological Society of America Special Paper 198, 1984.

    Google Scholar

    [11] Festa A, Pini G A, Dilek Y, et al.Mélanges and mélange-forming processes: A historical overview and new concepts[C]//Dilek Y.Alpine Concept in Geology.International Geology Review, 2010, (52): 1040-1105.

    Google Scholar

    [12] Festa A, Pini G A, Dilek Y, et al.Peri-Adriatic mélanges and their evolution in the Tethyan realm[C]//Dilek Y.Eastern Mediterranean Geodynamics (Part Ⅱ).International Geology Review, 2010, (52): 369-406.

    Google Scholar

    [13] Festa A.Tectonic, sedimentary, and diapiric formation of the Messinian mélange: Tertiary Piedmont Basin (northwestern Italy)[C]//Wakabayashi J, Dilek Y.Mélanges: Processes of Formation and Societal Significance.Geological Society of America Special Paper 480, 2011: 215-232.

    Google Scholar

    [14] 李荣社, 计文化, 辜平阳, 等.造山带(蛇绿)构造混杂岩带填图方法[M].武汉:中国地质大学出版社, 2016.

    Google Scholar

    [15] Greenly E.The Geology of Anglesey[M].Memoir Geological Survey of Great Britain, vol.2, HMSO, London, 1919.

    Google Scholar

    [16] Reymond M C.Mechanism of brittle fracture of rock during uniaxial compression in laboratory and in a quarry by an acoustic emission technique[J].Rock Mechanics, 1975, (7):1-16.

    Google Scholar

    [17] Silver E A, Beutner E C.Mélanges[J].Geology, 1980, (8):32-34.

    Google Scholar

    [18] 殷鸿福, 张克信, 陈能松, 等.中华人民共和国区域地质调查报告, 冬给措纳湖幅(I47C001002)[M].武汉:中国地质大学出版社, 2003.

    Google Scholar

    [19] Kusky T M, Windley B F, Safonova I, et al.Recognition of ocean plate stratigraphy in accretionary orogens through Earth history:A record of 3.8 billion years of sea floor spreading, subduction, and accretion[J].Gondwana Research, 2003, (24):501-547.

    Google Scholar

    [20] Raymond L A.Cretaceous sedimentation and regional thrusting, northeastern Diablo Range, California[J].Geological Society of America Bulletin, 1970, (81):2123-2128.

    Google Scholar

    [21] Raymond L A.Possible modern analogs for rocks of the Franciscan Complex, Mount Oso area, California[J].Geology, 1974, (2):143-146.

    Google Scholar

    [22] Cowan D S.Deformation and metamorphism of the Franciscan subduction zone complex northwest of Pacheco Pass, California[J].Geological Society of America Bulletin, 1974, (85):1623-1634.

    Google Scholar

    [23] Cowan D S.Structural styles in Mesozoic and Cenozoic mélanges in the Western Cordillera of North America[J].Geological Society of America Bulletin, 1985, (96):451-462.

    Google Scholar

    [24] Aalto K R.Multistage mélange formation in the Franciscan Complex, northernmost California[J].Geology, 1981, (9):602-607.

    Google Scholar

    [25] Aalto K R.Franciscan Complex olistostrome at Crescent City, northern California[J].Sedimentology, 1989, (36):471-495.

    Google Scholar

    [26] Cloos M.Flow mélanges:Numerical modelling and geologic constraints on their origin in the Franciscan subduction complex, California[J].Geological Society of America Bulletin, 1982, (93):330-345.

    Google Scholar

    [27] Cloos M.Thermal evolution of convergent plate-margins:Thermal modelling and re-evaluation of isotopic Ar-ages for blueschists in the Franciscan Complex of California[J].Tectonics, 1985, (4):421-433.

    Google Scholar

    [28] Jeanbourquin P.Chronology of deformation of a Franciscan mélange near San Francisco (California, USA)[J].Eclogae Geologicae Helvetiae, 2000, (93):363-378.

    Google Scholar

    [29] Wakabayashi J, Dilek Y.Mélanges: Processes of Foemation and societal significance[M].The Geological Society of America, Special Paper 480, 2011.

    Google Scholar

    [30] Maxwell J C.Anatomy of an orogen[J].Geological Society of America Bulletin, 1974, (85):1195-1204.

    Google Scholar

    [31] Blake M C, Jr Jayko A S, McLaughlin R J, et al.Metamorphic and tectonic evolution of the Franciscan Complex, northern California[C]//Ernst W G.Metamorphism and Crustal Evolution of the Western United States: Rubey Volume Ⅶ: Englewood Cliffs, New Jersey, Prentice-Hall, 1988: 1035-1060.

    Google Scholar

    [32] Wakabayashi J.Nappes, tectonics of oblique plate convergence, and metamorphic evolution related to 140 million years of continuous subduction, Franciscan Complex, California[J].Journal of Geology, 1992, (100):19-40.

    Google Scholar

    [33] Wakabayashi, J..Subduction and the rock record: Concepts developed in the Franciscan Complex, California[C]//Sloan D, Moores E M, Stout D.Classic Cordilleran Concepts: A View from California.Geological Society of America Special Paper 338, 1999: 123-133.

    Google Scholar

    [34] 张克信, 殷鸿福, 朱云海, 等.史密斯地层与非史密斯地层[J].地球科学, 2003, 28(4):361-369.

    Google Scholar

    [35] 张克信, 冯庆来, 宋博文, 等.造山带非史密斯地层[J].地学前缘, 2014, 21(2):36-47.

    Google Scholar

    [36] Saleeby J.Geochemical mapping of the Kings-Kaweah ophiolite belt, California-Evidence for progressive mélange formation in a large offset transform-subduction initiation environment[M].The Geological Society of America Special Paper 480, 2011: 31-74.

    Google Scholar

    [37] Myhill R.Constraintson the evolution of the Mesohellenic Ophiolite from subophioliticmetamorphic rocks[M].The Geological Society of America Special Paper 480, 2011: 75-94.

    Google Scholar

    [38] 张进, 邓晋福, 肖庆辉, 等.蛇绿岩研究的最新进展[J].地质通报, 2012, 31(1):1-12.

    Google Scholar

    [39] Steinmann, G..Der ophiolitischen Zonen in der Mediterranean Kettengebirgen[J].14th International Geological Congress in Madrid, 1927, (2):637-667.

    Google Scholar

    [40] Coleman R G.Ophiolites[M].New York:Springer-Verlag, 1977.

    Google Scholar

    [41] Anonymous Penrose.Field Conference on Ophiolites[J].Geotimes, 1972, (17):24-25.

    Google Scholar

    [42] Dilek Y, Furnes H.Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J].Geological Society of America Bulletin, 2011, (123):387-411.

    Google Scholar

    [43] Pearce J A.Immobile Element Fingerprinting of Ophiolites[J].Elements, 2014, (10):101-108.

    Google Scholar

    [44] 王荃, 刘雪亚.中国西部的古海洋地壳及其大地构造意义[J].地质科学, 1976, (1):14-24.

    Google Scholar

    [45] 何国琦, 邵济安.内蒙古东南部(昭盟)西拉木伦河一带早古生代蛇绿岩建造的确认及其大地构造意义[M].中国北方板块构造文集: 第一集.北京: 地质出版社, 1983: 243-250.

    Google Scholar

    [46] 冯益民.西准噶尔蛇绿岩生成环境及其成因类型[J].中国地质科学院西安地质矿产研究所所刊, 1986, (13):37-45.

    Google Scholar

    [47] 王希斌, 郝梓国.中国造山带蛇绿岩的时空分布及构造类型[J].中国区域地质, 1994, 13(3):193-204.

    Google Scholar

    [48] 邓万明.喀喇昆仑-西昆仑地区蛇绿岩的地质特征及其大地构造意义[J].岩石学报, 1995, (S1):98-111.

    Google Scholar

    [49] 周鼎武, 董云鹏, 刘良, 等.松树沟元古宙蛇绿岩Nd、Sr、Pb同位素地球化学特征[J].地质科学, 1998, (1):32-39.

    Google Scholar

    [50] 简平, 汪啸风, 何龙清.中国西南哀牢山蛇绿岩同位素地质年代学及大地构造意义[J].华南地质与矿产, 1998(1):1-11.

    Google Scholar

    [51] 朱宝清, 王来生, 王连晓.准噶尔西南地区古生代蛇绿岩[J].中国地质科学院西安地质矿产研究所所刊, 1987, (17):3-64.

    Google Scholar

    [52] 郝梓国, 王希斌, 鲍佩声, 等.新疆西准噶尔地区两类蛇绿岩的地质特征及其成因研究[J].岩石矿物学杂志, 1989, 8(4):299-310.

    Google Scholar

    [53] 张旗.蛇绿岩的分类[J].地质科学, 1990, 25(1):54-61.

    Google Scholar

    [54] 张旗, 肖序常.中国蛇绿岩研究概述[J].岩石学报, 1995, (11增刊):1-9.

    Google Scholar

    [55] 肖序常.从扩张速率试论蛇绿岩的类型划分[J].岩石学报, 1995, (11增刊):10-23.

    Google Scholar

    [56] 王希斌, 鲍佩声, 戎合.中国蛇绿岩中变质橄榄岩的稀土元素地球化学[J].岩石学报, 1995, (11增刊):24-41.

    Google Scholar

    [57] 张旗, 周国庆.中国蛇绿岩[M].北京:科学出版社, 2001.

    Google Scholar

    [58] Zhang Q, Wang Y, Zhou G Q, et al.Ophiolites in China: their distribution, ages and tectonic settings[C]//Dilek Y, Robinson P T.Ophiolites in Earth History.Geological Society of London Special Publication 218, 2003: 541-566.

    Google Scholar

    [59] 周国庆.蛇绿岩研究新进展及其定义和分类的再讨论[J].南京大学学报(自然科学版), 2008, (44):1-24.

    Google Scholar

    [60] 张传林, 董永观, 杨志华.秦岭晋宁期的两条蛇绿岩带及其对秦岭-大别构造演化的制约[J].地质学报, 2000, 74(4):313-324.

    Google Scholar

    [61] 王志洪, 李继亮, 侯泉林, 等.西昆仑库地蛇绿岩地质、地球化学及其成因研究[J].地质科学, 2000, (2):151-160.

    Google Scholar

    [62] 陈亮, 孙勇, 裴先治, 等.德尔尼蛇绿岩40Ar-39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据[J].科学通报, 2001, 46(5):424-426.

    Google Scholar

    [63] 朱云海, 张克信, 王国灿, 等.东昆仑复合造山带蛇绿岩、岩浆岩及构造岩浆演化[M].武汉:中国地质大学出版社, 2002.

    Google Scholar

    [64] 肖序常, 王军, 苏犁, 宋述光.再论西昆仑库地蛇绿岩及其构造意义[J].地质通报, 2003, (10):745-750.

    Google Scholar

    [65] 赖绍聪, 张国伟, 裴先治, 等.南秦岭康县-琵琶寺-南坪构造混杂带蛇绿岩与洋岛火山岩地球化学及其大地构造意义[J].中国科学(D辑), 2003, 33(1):10-19.

    Google Scholar

    [66] 计文化, 韩芳林, 王炬川, 等.西昆仑于田南部苏巴什蛇绿混杂岩的组成、地球化学特征及地质意义[J].地质通报, 2004, (12):1196-1201.

    Google Scholar

    [67] 史仁灯.蛇绿岩研究进展、存在问题及思考[J].地质论评, 2005, 51(6):681-693.

    Google Scholar

    [68] 吴根耀.藏东左贡地区碧土蛇绿岩:古特提斯主洋盆的地质记录[J].地质通报, 2006, 25(6):685-693.

    Google Scholar

    [69] 邓晋福, 肖庆辉, 苏尚国, 等.火成岩组合与构造环境讨论[J].高校地质学报, 2007, 13(3):392-402.

    Google Scholar

    [70] 曾建元, 杨怀仁, 杨宏仪, 等.北祁连东草河蛇绿岩:一个早古生代的洋壳残片[J].科学通报, 2007, 52(7):825-835.

    Google Scholar

    [71] 杨经绥, 史仁灯, 吴才来, 等.北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J].岩石学报, 2008, 24(7):1567-1584.

    Google Scholar

    [72] 杨经绥, 徐向珍, 李天福, 等.新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年:早古生代洋盆的证据[J].岩石学报, 2011, 27(1):77-95.

    Google Scholar

    [73] 李才, 董永胜, 翟庆国, 等.青藏高原羌塘早古生代蛇绿岩-堆晶辉长岩的锆石SHRIMP定年及其意义[J].岩石学报, 2008, 24(1):31-36.

    Google Scholar

    [74] 刘战庆, 裴先治, 李瑞保, 等.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J].地质学报, 2011, 85(2):185-194.

    Google Scholar

    [75] Wang Y W, Wang J B, Wang L J, et al.The Tuerkubantao ophiolite melange in Xinjiang, NW China:New evidence for the Erqis suture zone[J].Geoscience Frontiers, 2012, 3(5):587-602.

    Google Scholar

    [76] Kusky T M, Zhai M..The neoarchean ophiolite in the North China craton:Early precambrian plate tectonics and scientific debate[J].Journal of Earth Science, 2012, 23(3):277-284.

    Google Scholar

    [77] 张越, 徐学义, 陈隽璐, 等.阿尔泰地区玛因鄂博蛇绿岩的地质特征及其LA-ICP-MS锆石U-Pb年龄[J].地质通报, 2012, 31(6):834-842.

    Google Scholar

    [78] 潘桂棠, 王立全, 张万平, 等.青藏高原及邻区大地构造图及说明书(1:1500000)[M].北京:地质出版社, 2013.

    Google Scholar

    [79] 王保弟, 王立全, 潘桂棠, 等.昌宁-孟连结合带南汀河蛇绿岩中辉长岩锆石定年及其地质意义[J].科学通报, 2013, 58(4):344-354.

    Google Scholar

    [80] Xiao W J, Han C M, Liu W, et al..How many sutures in the southern Central Asian Orogenic Belt:insights from East Xinjiang-West Gansu (NW China)?[J].Geosci.Front., 2014, (5):525-536.

    Google Scholar

    [81] Dong Y, Yang Z, Liu X, et al.Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton:Constraints from geochronology and geochemistry of the Kuanping ophiolite[J].Precambrian Research, 2014, (255):77-95.

    Google Scholar

    [82] Zhang Z, Li K, Li J, et al.Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex:Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt[J].Journal of Asian Earth Sciences, 2015, (97):279-293.

    Google Scholar

    [83] 翁凯, 徐学义, 马中平, 等.新疆西准噶尔玛依勒蛇绿岩中镁铁-超镁铁质岩的地球化学、年代学及其地质意义[J].岩石学报, 2016, 32(5):1420-1436.

    Google Scholar

    [84] 舍建忠, 杨万志, 屈迅, 等.东天山大草滩北镁铁超镁铁岩锆石UPb年龄、地球化学特征及其地质意义[J].矿物岩石地球化学通报, 2017, 36(1):82-91.

    Google Scholar

    [85] 舍建忠, 冯长丽, 贾健, 等.东天山中段造山带构造单元划分及演化特征[J].新疆地质, 2018, 36(2):135-141.

    Google Scholar

    [86] Wang S D, Zhang K X, Song B W, et al.Geochronology and geochemistry of the Niujuanzi ophiolitic mélange, Gansu Province, NW China:implications for tectonic evolution of the Beishan Orogenic Collage[J].Int.J Earth Sci.(Geol Rundsch), 2018, (107):269-289.

    Google Scholar

    [87] Liu S F, Peng S B, Kusky T, et al.Origin and tectonic implications of an Early Paleozoic (460-440 Ma)subduction-accretion shear zone in the northwestern Yunkai Domain, South China[J].Lithos, 2018, (322):104-128.

    Google Scholar

    [88] 郑涛, 黄德志, 崔建军, 等.皖南伏川SSZ型蛇绿岩的地球化学特征与构造意义[J].矿物学报, 2019, https://doi.org/10.16461/j.cnki.1000-4734.2019.39.016.

    Google Scholar

    [89] 潘桂棠, 肖庆辉, 陆松年, 等.大地构造相的定义、划分、特征及其鉴别标志[J].地质通报, 2008, 27(10):1613-1637.

    Google Scholar

    [90] 张克信, 何卫红, 徐亚东, 等.沉积大地构造相划分与鉴别[J].地球科学, 2014b, 39(8):915-928.

    Google Scholar

    [91] 张克信, 徐亚东, 何卫红, 等.中国新元古代青白口纪早期(1000-820Ma)洋陆分布[J].地球科学, 2018, 43(11):3837-3852.

    Google Scholar

    [92] Dewey J F, Bird J M.The origin and emplacement of the ophiolite suite:Appalachian ophiolites in Newfoundland[J].Journal of Geophysical Research, 1971, (76):3179-3206.

    Google Scholar

    [93] Nicolas A.Structure of Ophiolites and Dynamics of Oceanic Lithosphere[M].Dordrecht, the NetherlandsKluwer Academic Publishers, 1989.

    Google Scholar

    [94] Dilek Y, Flower M F J.Arc-trench roll-back and forearc accretion: 2.A model template for ophiolites in Albania, Cyprus, and Oman[C]//Dilek Y, Robinson P T.Ophiolites in Earth History: Geological Society of London Special Publication 218, 2003: 43-68.

    Google Scholar

    [95] Cloos M.Lithosphere buoyancy and collisional orogenesis:Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts[J].Geological Society of America Bulletin, 1993, (105):715-737.

    Google Scholar

    [96] Lagabrielle Y, Guivel C, Maury R, et al.Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction:The Chile triple junction model[J].Tectonophysics, 2000, (326):255-268.

    Google Scholar

    [97] Cawood P A., Kröner A, Collins W J, et al.Accretionary orogens through Earth history[C]//Cawood P A, Kröner A.Earth Accretionary Systems in Space and Time, Geological Society of London Special Publication 318, 2009: 1-36.

    Google Scholar

    [98] Lister G, Forster M.Tectonic mode switches and the nature of orogenesis[J].Lithos, 2009, (113):274-291.

    Google Scholar

    [99] Isozaki Y, Maruyama S, Fukuoka F.Accreted oceanic materials in Japan[J].Tectonophysics, 1990, (181):179-205.

    Google Scholar

    [100] Kroner A.The Central Asian Orogenic Belt[M].Suttgart:BornttaegerSciece Publishers, 2015.

    Google Scholar

    [101] McCall G J H, Kidd R G W.The Makran, Southeastern Iran: the anatomy of a convergentplate margin active from Cretaceous to Present[M].Geological Society, London, Specical Publications10, 1982: 387-397.

    Google Scholar

    [102] 陆松年, 郝国杰, 王惠初, 等.中国变质岩大地构造图说明书(1:2500000)[M].北京:地质出版社, 2015.

    Google Scholar

    [103] 陆松年, 郝国杰, 王惠初, 等.中国变质岩大地构造[M].北京:地质出版社, 2017.

    Google Scholar

    [104] 全国地层委员会.中国地层指南及中国地层指南说明书(修订版)[M].北京:地质出版社, 2001.

    Google Scholar

    [105] Whittaker et al.A guide to stratigraphical procedure[M].Stratigraphy Committee of Geol.Soc.London.Geol.Soc.London Jour., 148, 1991.

    Google Scholar

    [106] Amos Salvador编.金玉玕, 戌嘉余等译.国际地层指南(第二版)[M].北京: 地质出版社, 2000.

    Google Scholar

    [107] 王涛, 裴先治, 胡能高, 等.一种特殊类型的变质火山-沉积岩系及其单位划分问题[C]//陈克强, 汤家富.构造地层单位研究.武汉: 中国地质大学出版社, 1995: 60-66.

    Google Scholar

    [108] Howell D G著.王成善等译.地体构造学-山脉形成和大陆生长[M].成都: 四川科学技术出版社, 1991.

    Google Scholar

    [109] Sawaki Y, Shibuya T, Kawai T, et al.Imbricate ocean-plate stratigraphy and U-Pb zircon ages from tuff beds in cherts in the Ballantrae complex, SW Scotland[J].Bulletin of the Geological Society of America 2010, 122:454-464.

    Google Scholar

    [110] Leggett J K, McKerrow W S, Eales M H.The Southern Uplands of Scotland:a Lower Palaeozoic accretionary prism[J].Journal of the Geological Society of London, 1979, (136):755-770.

    Google Scholar

    [111] Wang L J, Zhang K X, Lin S F, et al.Turbidite record of a Neoproterozoic active continental margin in the West Cathaysia terrane, South China:implications for the relationships between the Yangtze and Cathaysia blocks and their positions in Rodinia[J].Precambrian Research, 2020, doi:https://doi.org/10.1016/j.precamres.2019.105457.

    Google Scholar

    [112] Sengōr A M C著.丁晓等译.板块构造学与造山运动[M].上海: 复旦大学出版社, 1992.

    Google Scholar

    [113] Coney P J, Jones D J, Monger J W H.Cordilleran suspect terranes[J].Nature, 1980, (239):329-333.

    Google Scholar

    [114] Howell D G.Mesozoic accretion of exotic terranes along the New Zealand segment of Gondwanaland[J].Geology, 1980, (8):487-491.

    Google Scholar

    [115] Ozawa T, Kanmera K.Tectonic terranes of late Paleozoic rocks and their accretionary history in the Circum-Pacific Region viewed from fusulinacean paleobiogeography[J].Stanford Univ.Publ.Geol.Sci., 1984, (18):158-160.

    Google Scholar

    [116] Bishop D G, Bradshaw J D, Landis C A.Provisional terrane map of South Island, New Zealand[C]//Howell D G.Tectonostratigraphic Terranes of the Circum-Pacific Region.Circum-Pacific Council for Energy and Mineral Resources, Earth Sciences Series, vol.1, AAPG Bookstore, Tulsa Oklahama, 1985: 515-521.

    Google Scholar

    [117] 许志琴, 姜枚, 杨经绥.青藏高原北部隆升的深部地球物理作用——以"格尔木-唐古拉山"地质及地球物理综合剖面为例[J].地质学报, 1996, 70(3):195-206.

    Google Scholar

    [118] 许志琴, 李源, 梁凤华, 等."秦岭-大别-苏鲁"造山带中"古特提斯缝合带"的连接[J].地质学报, 2015, 89(4):671-680.

    Google Scholar

    [119] Ogawa Y.Variety of subduction and accretion processes in cretaceous to recent plate boundries around southwest and central Japan[J].Tectonophysics, 1985, 112(1):493-518.

    Google Scholar

    [120] Zhao G C, Wang Y J, Huang B C, et al.Geological reconstructions of the East Asian blocks:From the breakup of Rodinia to the assembly of Pangea[J].Earth-Science Reviews, 2018, https://doi.org/10.1016/j.earscirev.2018.10.003.

    Google Scholar

    [121] 殷鸿福, 张洪涛, 其和日格, 等.关于"非史密斯地层学"的一点意见[J].中国区域地质, 1999, 18(3):225-228.

    Google Scholar

    [122] Zhang K X, Yin H F, Zhu Y H, et al.Smith Strata and Non-Smithian Strata[J].Journal of China University of Geosciences, 2004, 15(3):253-261.

    Google Scholar

    [123] 冯庆来.造山带区域地层学研究的思想和工作方法[J].地质科技情报, 1993, 12(3):51-56.

    Google Scholar

    [124] 龚一鸣, 张克信, 等.地层学基础与前沿[M].武汉:中国地质大学出版社, 2007.

    Google Scholar

    [125] Wheeler H E.Primary factors in biostratigraphy[J].Petroleum Geol.Bull., 1958, 42(3):640-655.

    Google Scholar

    [126] 王鸿祯.地层学的分类体系和分支学科-对修订中国地层指南的设想[J].地质论评, 1989, 35(3):271-276.

    Google Scholar

    [127] 吴浩若.构造地层学[J].地球科学进展, 1992, 7(2):75.

    Google Scholar

    [128] 马杏垣, 索书田, 闻立峰.前寒武纪变质岩构造的构造解析[J].地球科学, 1981, (1):67-74.

    Google Scholar

    [129] 单文琅, 傅昭仁.区域变质岩区填图的构造地层学准则[J].地球科学, 1987, 12(5):559-566.

    Google Scholar

    [130] 陈克强, 汤加富.构造地层单位研究[M].武汉:中国地质大学出版社, 1995.

    Google Scholar

    [131] Sano H, Kanmera K.Collapse of ancient oceanic reef complex-what happened during collision of Akiyoshi reef complex? Sequence of collisional collapse and generation of collapse products[J].Journal of the Geological Society of Japan, 1991, (97):631-644.

    Google Scholar

    [132] Wakita K, Metcalfe I.Ocean plate stratigraphy in East and South-east Asia[J].Journal of Asian Earth Sciences, 2005, 24(6):679-702.

    Google Scholar

    [133] 郑建平, 熊庆, 赵伊, 等.俯冲带橄榄岩及其记录的壳幔相互作用[J].中国科学:地球科学, 2019, (49), doi:10.1360/N072018-00272

    CrossRef Google Scholar

    [134] Wakita K.Mappable features of mélanges derived from Ocean Plate Stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes in Southwest Japan[J].Tectonophysics, 2012, (568/569):74-85.

    Google Scholar

    [135] 王鸿祯, 等.中国古地理图集[M].北京:地图出版社, 1985.

    Google Scholar

    [136] Festa A, Dilek Y, Pini G A, et al.Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations:Redefining and classifying mélanges[J].Tectonophysics, 2012, (568/569):7-24.

    Google Scholar

    [137] Mori R, Ogawa Y, Hirano N, et al.Role of plutonic and metamorphic block exhumation in a forearc ophiolite mélange belt: An example from the Mineoka belt, Japan[M].The Geological Society of America Special Paper 480, 2011: 95-116.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(1869) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint