2020 Vol. 39, No. 6
Article Contents

CHEN Li, LIU Han, HE Juan. LA-ICP-MS zircon U-Pb ages of the two phases of magmatism in the Xiuwacu W-Mo deposit, northwest Yunnan, and their implications for ore genesis[J]. Geological Bulletin of China, 2020, 39(6): 929-942.
Citation: CHEN Li, LIU Han, HE Juan. LA-ICP-MS zircon U-Pb ages of the two phases of magmatism in the Xiuwacu W-Mo deposit, northwest Yunnan, and their implications for ore genesis[J]. Geological Bulletin of China, 2020, 39(6): 929-942.

LA-ICP-MS zircon U-Pb ages of the two phases of magmatism in the Xiuwacu W-Mo deposit, northwest Yunnan, and their implications for ore genesis

  • Two phases of intrusive magmatism were developed in the Xiuwacu deposit, northwest Yunnan.This study focused on the geochronological and geochemical characteristics of these intrusive rocks so as to define the petrogenesis of the Xiuwacu deposit.The LA-ICP-MS zircon U-Pb dating results show that biotite granite from the east of Xiuwacu deposit was formed at 214.9±1.3 Ma, granite porphyry and monzogranite from the west of Xiuwacu deposit was formed at 87.47±0.51 Ma and 83.29±0.60 Ma.The results of the studies show that the molybdenite from the Xiuwacu deposit was formed at 82~86 Ma, corresponding to Late Yanshanian.The two phases of intrusions have similar geochemical characteristics, both belonging to the shoshonitic type and metaluminous to slight peraluminous series, with enrichment of LILE(Rb, Th, U)and depletion of HFSE(Nb, Sr, Zr, Hf).The Y-Nb and Yb-Ta discrimination diagrams indicate that the two phases of intrusions were formed in different tectonic environments.The Late Triassic intrusive rocks fall into the field of syn-collision granites while the Late Cretaceous intrusive rocks fall into the field of intra-plate granites.Based on comprehensive study with regional geology and acquired achievements in fluid inclusions, S and Pb isotopes as well as zircon Hf isotopes, the authors infer that the partial melting of thickened lower crust in the Late Cretaceous seems to have been the main metallogenic material source of the Xiuwacu deposit.The ore-bearing thermal fluid migrated along the fault-crack system in the Xiuwacu deposit, and then the W-Mo orebodies were formed at the favorable position along with the combined effect of both temperature decreasing and the mixing with meteoric water.

  • 加载中
  • [1] 钟大赉, 吴根耀, 赵永贵, 等.滇川西部古特提斯造山带[M].北京:科学出版, 1998.

    Google Scholar

    [2] 李兴振, 刘文均, 王义昭, 等.西南三江地区特提斯构造演化与成矿(总论)[M].北京:地质出版社, 1999:1-276.

    Google Scholar

    [3] 潘桂棠, 徐强, 侯增谦, 等.西南三江多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社, 2003:1-420.

    Google Scholar

    [4] 潘桂棠, 王立全, 李荣社, 等.多岛弧盆系构造模式:认识大陆地质的关键[J].沉积与特提斯地质, 2012, 32(3):1-20. doi: 10.3969/j.issn.1009-3850.2012.03.001

    CrossRef Google Scholar

    [5] 侯增谦, 杨岳清, 王海平, 等.三江义敦岛弧碰撞造山过程与成矿系统[M].北京:地质出版社, 2003:1-345.

    Google Scholar

    [6] 李文昌, 潘桂棠, 侯增谦, 等.西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术背景[J].北京:地质出版社, 2010:1-491.

    Google Scholar

    [7] 李文昌, 余海军, 尹光侯.西南"三江"格咱岛弧斑岩成矿系统[J].岩石学报, 2013, 29(4):1129-1144.

    Google Scholar

    [8] Deng J, Wang Q F, Li G J, et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J].Gondwana Research, 2014, 26(2):419-437. doi: 10.1016/j.gr.2013.08.002

    CrossRef Google Scholar

    [9] 尹福光, 潘桂棠, 万方, 等.西南"三江"造山带大地构造相[J].沉积与特提斯地质, 2006, 26(4):33-39. doi: 10.3969/j.issn.1009-3850.2006.04.005

    CrossRef Google Scholar

    [10] 李建康, 李文昌, 王登红, 等.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报, 2007, 23(10):2415-2422. doi: 10.3969/j.issn.1000-0569.2007.10.010

    CrossRef Google Scholar

    [11] 余海军, 李文昌.滇西北休瓦促钼矿区两期侵入岩年代学、地球化学及其地质意义[J].矿床地质, 2014, 33(增刊):319-320.

    Google Scholar

    [12] 余海军, 李文昌.滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据[J].岩石学报, 2016, 32(8):2265-2280.

    Google Scholar

    [13] 王新松, 毕献武, 胡瑞忠, 等.滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束[J].岩石学报, 2015, 31(1):3171-3188.

    Google Scholar

    [14] 刘学龙, 李文昌, 杨富成, 等.云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义[J].地质学报, 2017, 91(4):849-863. doi: 10.3969/j.issn.0001-5717.2017.04.011

    CrossRef Google Scholar

    [15] 张向飞, 李文昌, 尹光候, 等.滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束[J].岩石学报, 2017, 33(7):2018-2036.

    Google Scholar

    [16] Wang X S, Bi X W, Leng C B, et al.Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W)mineralization in the southern Yidun arc, SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews, 2014, 61:73-95. doi: 10.1016/j.oregeorev.2014.01.006

    CrossRef Google Scholar

    [17] He J, Wang B D, Wang L Q, et al.Geochemistry and geochronology of the Late Cretaceous Tongchanggou Mo-Cu deposit, Yidun Terrane, SE Tibet:Implications for post-collisional metallogenesis[J].Journal of Asian Earth Science, 2019, 172:308-327. doi: 10.1016/j.jseaes.2018.09.015

    CrossRef Google Scholar

    [18] Hou Z Q.Tectonic-magmatic evolution of the Yidun island-arc and geodynamic setting of Kuroko-type sulfid deposits in Sanjiang region, SW China[J].Resource Geology, 1993, 17:336-350.

    Google Scholar

    [19] Hou Z Q, Zaw K, Pan G T, et al.Sanjiang tethyan metallogenesis in S.W.China:Tectonic setting, metallogenic epochs and deposit types[J].Ore Geology Reviews, 2007, 31(1/4):48-87.

    Google Scholar

    [20] 侯增谦, 曲晓明, 周继荣, 等.三江地区义敦岛弧碰撞造山过程:花岗岩记录[J].地质学报, 2001, 75(4):484-497. doi: 10.3321/j.issn:0001-5717.2001.04.008

    CrossRef Google Scholar

    [21] 侯增谦, 杨岳清, 曲晓明, 等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报, 2004, 78(1):109-120.

    Google Scholar

    [22] 曲晓明, 侯增谦, 周书贵.川西连龙矽卡岩型锡、银多金属矿床成矿地质特征[J].地球学报, 2001, 22(1):20-34.

    Google Scholar

    [23] 曲晓明, 侯增谦, 周书贵, 等.川西连龙含锡花岗岩的时代与形成构造环境[J].地球学报, 2002, 23(3):223-228. doi: 10.3321/j.issn:1006-3021.2002.03.006

    CrossRef Google Scholar

    [24] Qu X M, Hou Z Q, Zhou S G.Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidu arc belt of northern Sanjiang region, southwestern China[J].Resource Geology, 2002, 52(2):163-172. doi: 10.1111/j.1751-3928.2002.tb00128.x

    CrossRef Google Scholar

    [25] 刘权.四川夏塞银多金属矿床地质特征及成因[J].矿床地质, 2003, 22(2):121-128. doi: 10.3969/j.issn.0258-7106.2003.02.002

    CrossRef Google Scholar

    [26] 邹光富, 郑荣才, 胡世华, 等.四川巴塘县夏塞银多金属矿床特征[J].成都理工大学学报(自然科学版), 2008, 35(1):93-102. doi: 10.3969/j.issn.1671-9727.2008.01.016

    CrossRef Google Scholar

    [27] 林青.四川巴塘县夏隆银铅锌矿床特征与找矿前景[J].四川地质学报, 2010, 30(4):447-449. doi: 10.3969/j.issn.1006-0995.2010.04.019

    CrossRef Google Scholar

    [28] 王新松, 毕献武, 冷成彪, 等.滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义[J].矿物学报, 2011, 31(3):315-321.

    Google Scholar

    [29] 杨岳清, 侯增谦, 黄典豪, 等.中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报, 2002, 23(1):17-24. doi: 10.3321/j.issn:1006-3021.2002.01.004

    CrossRef Google Scholar

    [30] 曾普胜, 侯增谦, 李丽辉, 等.滇西北普朗斑岩铜矿床成矿时代及其意义[J].地质通报, 2004, 23(11):1127-1131. doi: 10.3969/j.issn.1671-2552.2004.11.013

    CrossRef Google Scholar

    [31] 徐兴旺, 蔡新平, 屈文俊, 等.滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义[J].地质学报, 2006, 80(9):1422-1433. doi: 10.3321/j.issn:0001-5717.2006.09.016

    CrossRef Google Scholar

    [32] 尹光候, 李文昌, 蒋成兴, 等.中甸火山-岩浆弧燕子山期热林复式岩体演化与Ar-Ar定年及铜钼矿化[J].地质与勘探, 2009, 45(4):385-394.

    Google Scholar

    [33] 李文昌, 余海军, 尹光候, 等.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J].矿床地质, 2012, 31(2):282-292. doi: 10.3969/j.issn.0258-7106.2012.02.009

    CrossRef Google Scholar

    [34] Yu H J, Li W C, Yin G H, et al.Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication[J].Acta Geologica Sinica, 2014, 88(4):1183-1194. doi: 10.1111/1755-6724.12282

    CrossRef Google Scholar

    [35] Li W C, Yin G H, Yu H J, et al.The Yanshanian granites and associated Mo-polymetallic mineralization in the Xiangcheng-Luoji area of the Sanjiang-Yangtze conjunction zone in southwest China[J].Acta Geologica Sinica, 2014, 88(6):1742-1756. doi: 10.1111/1755-6724.12341

    CrossRef Google Scholar

    [36] Zu B, Xue C J, Zhao Y, et al.Late cretaceous metallogeny in the Zhongdian area:Constraints from Re-Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China[J].Ore Geology Reviews, 2015, 64:1-12. doi: 10.1016/j.oregeorev.2014.06.009

    CrossRef Google Scholar

    [37] 余海军, 李文昌, 尹光候, 等.滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J].岩石学报, 2015, 31(11):217-3233.

    Google Scholar

    [38] 杨立强, 高雪, 和文言.义敦岛弧晚白垩世斑岩成矿系统[J].岩石学报, 2015, 31(11):3155-3170.

    Google Scholar

    [39] 王泽传, 赵茂春, 严城民, 等.滇西北大地构造单元的划分与特征[J].沉积与特提斯地质, 2015, 35(2):66-75. doi: 10.3969/j.issn.1009-3850.2015.02.010

    CrossRef Google Scholar

    [40] Liu Y S, Hu Z C, Gao S et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1/2):34-43.

    Google Scholar

    [41] Chen J L, Xu J F, Wang B D, et al.Origin of Cenozoic alkaline potassic volcanic rocks at Konglongxiang, Lhasa terrane, Tibetan Plateau Products of partial melting of a mafic lower-crustal source?[J].Chemical Geology, 2010, 273:286-299. doi: 10.1016/j.chemgeo.2010.03.003

    CrossRef Google Scholar

    [42] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [43] Hoskin P W O, Black L P.Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology, 2000, 8:423-439.

    Google Scholar

    [44] Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews, 1994, 37(3/4):215-224.

    Google Scholar

    [45] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [46] 蒋成兴, 尹光候, 杨艳, 等.川西乡城-滇西北洛吉地区燕山期花岗岩及铜钼多金属成矿作用[J].金属矿产, 2013, 49(6):1017-1035

    Google Scholar

    [47] 孟健寅, 杨立强, 吕亮.滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义[J].岩石学报, 2013, 29(4):1214-1222.

    Google Scholar

    [48] 张向飞.滇西北休瓦促钨钼矿区复式岩体成岩成矿作用[D].中国地质大学(北京)博士学位论文, 2018: 103-107.

    Google Scholar

    [49] 王蝶, 卢焕章, 毕献武.与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较[J].地学前缘, 2011, 18:121-131.

    Google Scholar

    [50] Heinrich C A, Driesner T, Stefánsson A, et al.Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J].Geology, 2004, 32:761-764. doi: 10.1130/G20629.1

    CrossRef Google Scholar

    [51] Audétat A, Pettke T, Dolejš D.Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexieo(USA):genetic constraints on porphyry-Cu mineralization[J].Lithos, 2004, 74(324):147-161.

    Google Scholar

    [52] Nagaseki H, Hayashi K.Experimental study of the behavior of copper and zinc in a boiling hydrothermal system[J].Geology, 2008, 36(1):27-30.

    Google Scholar

    [53] Wilkinson J J.Triggers for the formation of porphyry ore deposits in magmatic arcs[J].Nature Geoscience, 2013, 6(11):917-925. doi: 10.1038/ngeo1940

    CrossRef Google Scholar

    [54] Ulrich T, Mavrogenes J.An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions for convective thinning of the lithosphere and the source of ocean island salts[J].Journal of Petrology, 2008, 72:2316-2330.

    Google Scholar

    [55] Cao K, Xu J F, Chen J L, et al.Double-layer structure of the crust beneath the Zhongdian arc, SW China:U-Pb geochronology and Hf isotope evidence[J].Journal of Asian Earth Sciences, 2016, 115:455-467. doi: 10.1016/j.jseaes.2015.10.024

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1357) PDF downloads(12) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint