Citation: | WANG Zhichen, LI Jianghai, SONG Juechen. A discussion on the distribution pattern of tectonic stress field in northern hemisphere continental crust based on the finite element analysis[J]. Geological Bulletin of China, 2020, 39(7): 950-957. |
The current geomorphology of the northern hemisphere continent results from plate tectonics, which manifests the complicated dynamic mechanism.However, there is no unified stress distribution pattern at present.In this paper, a three-dimensional elastic finite element model was applied to calculating the tectonic stress field in northern hemisphere continental crust by comprehensively considering the influence of tectonic boundaries and crustal structure, which was then tested by the focal mechanism solutions.The results show that the boundary force plays a key role in the regional tectonic stress field, and the depth difference between the Moho and the equilibrium interface will contribute to the vertical tectonic stress and to changing the stress properties afterwards.Influenced by the crustal structure, the convergent and transform boundaries can also partially have high tensile stress, while the tectonic active regions tend to have large differential stress values.The current stress field of the northern hemisphere is in a transient state of the long-term crustal evolution process.The simulation results of the three-dimensional elastic spherical model are reliable and can be used as a quantitative reference for the northern hemisphere tectonic stress field analysis.
[1] | Sperner B, Muller B, Heidbach O, et al.Tectonic stress in the Earth's crust:advances in the World Stress Map project[J].Geological Society London Special Publications, 2003, 212(1):101-116. doi: 10.1144/GSL.SP.2003.212.01.07 |
[2] | Heidbach O, Tingay M, Barth A, et al.Global crustal stress pattern based on the World Stress Map database release 2008[J].Tectonophysics, 2010, 482(1/4):0-15. |
[3] | Zhang S.The modeling of the tectonic stress field-theroy, method and related research progress on the finite element method[J].Progress in Geophysics, 2011, 26(1):52-60. |
[4] | Brenner, Susanne C, Scott L.The mathematical theory of finite element methods[J].Texts in Applied Mathematics, 2002, 3(298):263-291. doi: 10.1007/978-0-387-75934-0 |
[5] | Tian Y, Liu X, Li X.Finite Element Method of 3-D Numerical Simulation on Tectonic Stress Field[J].Earth Science, 2011, 36(2):375-380. doi: 10.3799/dqkx.2011.041 |
[6] | Liu M, Yang Y.Extensional collapse of the Tibetan Plateau:Results of three-dimensional finite element modeling[J].Journal of Geophysical Research:Solid Earth, 2003, 108(B8):2361-2376. doi: 10.1029/2002JB002248 |
[7] | Wei J, Sun W.Tectonic fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China Part one:Characteristics and controlling factors[J].Journal of Petroleum Science and Engineering, 2016, 146:617-625. doi: 10.1016/j.petrol.2016.07.042 |
[8] | Peng G, Yao L, Ren D.Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China[J].Journal of Structural Geology, 2016, 86:211-223. doi: 10.1016/j.jsg.2016.03.007 |
[9] | Wu Z, Zuo Y, Wang S, et al.Numerical study of multi-period palaeotectonic stress fields in Lower Cambrian shale reservoirs and the prediction of fractures distribution:A case study of the Niutitang Formation in Feng'gang No.3 block, South China[J].Marine and Petroleum Geology, 2017, 80:369-381. doi: 10.1016/j.marpetgeo.2016.12.008 |
[10] | Reynolds S D, Coblentz D D, Hillis R R.Tectonic forces controlling the regional intraplate stress field in continental Australia:Results from new finite element modeling[J].Journal of Geophysical Research:Solid Earth, 2002, 107(B7):2131-2146. doi: 10.1029/2001JB000408 |
[11] | Müller R D, Yatheesh V, Shuhail M.The tectonic stress field evolution of India since the Oligocene[J].Gondwana Research, 2015, 28(2):612-624. doi: 10.1016/j.gr.2014.05.008 |
[12] | Richardson R M, Reding L M.North American Plate Dynamics[J].Journal of Geophysical Research, 1991, 96(B7):12201-12223. doi: 10.1029/91JB00958 |
[13] | Bird P.Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting[J].Computers and Geosciences, 1999, 25(4):383-394. doi: 10.1016/S0098-3004(98)00142-3 |
[14] | 武永彩, 李昂, 唐红涛.滇西北地区近年来应力场的数值模拟研究[J].大地测量与地球动力学, 2018, 38(12):1238-1242. |
[15] | Lei X.Three-dimensional thermo-mechanical modeling of the Cenozoic uplift of the Tianshan mountains driven tectonically by the Pamir and Tarim[J].Journal of Asian Earth Sciences, 2013, 62(30):797-811. |
[16] | 范桃园, 龙长兴, 杨振宇, 等.中国大陆现今地应力场黏弹性球壳数值模拟综合研究[J].地球物理学报, 2012, 55(4):1249-1260. doi: 10.6038/j.issn.0001-5733.2012.04.020 |
[17] | Min G, Hou G.Geodynamics of the East African Rift System~30 Ma ago:A stress field model[J].Journal of Geodynamics, 2018, 117:1-11. doi: 10.1016/j.jog.2018.02.004 |
[18] | Dziewonski A M, Chou T A, Woodhouse J H.Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J].Journal of Geophysical Research:Solid Earth, 1981, 86(B4):2825-2852. doi: 10.1029/JB086iB04p02825 |
[19] | Ekström G, Nettles M, Dziewonski AM.The global CMT project 2004-2010:Centroid-moment tensors for 13, 017 earthquakes[J].Physics of the Earth and Planetary Interiors, 2012, 200:1-9. doi: 10.1016/j.pepi.2012.04.002 |
[20] | Richardson R M.Finite element modeling of stress in the Nazca plate:driving forces and plate boundary earthquakes[J].Tectonophysics, 1978, 50(2/3):223-248. |
[21] | Gölke M, Coblentz D.Origins of the European regional stress field[J].Tectonophysics, 1996, 266(1/4):11-24. doi: 10.1016/S0040-1951(96)00180-1 |
[22] | Turcotte D L, Schubert G.Geodynamics[M].Cambridge University Press, 2014. |
[23] | Richardson R M.North American plate dynamics[J].Journal of Geophysical Research:Solid Earth, 1991, 96(B7):12201-12223. doi: 10.1029/91JB00958 |
[24] | 张庆莲, 侯贵廷, 潘校华.中西非裂谷系形成的动力学机制[J].地质力学学报, 2018, 24(2):29-36. |
[25] | Pacanovsky K M, Davis D M, Richardson R M, et al.Intraplate stresses and plate-driving forces in the Philippine Sea Plate[J].Journal of Geophysical Research, 1999, 104(B1):1095-1110. doi: 10.1029/98JB02845 |
[26] | 高尚华, 佘雅文, 付广裕.利用重力/GPS联合观测数据计算地壳垂向构造应力的新方法[J].地球物理学报, 2016, 59(6):2006-2013. |
[27] | Wang C, Zhu L, Lou H, et al.Crustal thicknesses and Poisson's ratios in the eastern Tibetan Plateau and their tectonic implications[J].Journal of Geophysical Research, 2010, 115(B11):301-317. doi: 10.1029/2010JB007527 |
[28] | Bonvalot S, Balmino G, Briais A, et al.World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids[C]//EGU General Assembly Conference.EGU General Assembly Conference Abstracts, 2012: 11091. |
[29] | Finzel E S, Flesch L M, Ridgway K D.Present-day geodynamics of the northern North American Cordillera[J].Earth and Planetary Science Letters, 2014, 404:111-123. doi: 10.1016/j.epsl.2014.07.024 |
[30] | Zoback M D, Zoback M L, Mount V S, et al.New evidence on the state of stress of the San Andreas fault system[J].Science, 1987, 238:1105-1111. doi: 10.1126/science.238.4830.1105 |
[31] | Conrad C P.Influence of continental roots and asthenosphere on plate-mantle coupling[J].Geophysical Research Letters, 2006, 33(5):312-316. |
[32] | Hatzfeld D, Molnar P.Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications[J].Reviews of Geophysics, 2010, 48:2005-2053. |
[33] | Copley A, Avouac J P, Royer J Y.India-Asia collision and the Cenozoic slowdown of the Indian plate:Implications for the forces driving plate motions[J].Journal of Geophysical Research:Solid Earth, 2010, 115(B0):3410-3424. doi: 10.1029/2009JB006634 |
[34] | 张东宁, 许忠淮.中国大陆岩石层动力学数值模型的边界条件[J].地震学报, 1999, (2):133-139. doi: 10.3321/j.issn:0253-3782.1999.02.003 |
[35] | 汪素云, 张琳.中国及其邻区周围板块作用力的研究[J].地球物理学报, 1996, 39(6):764-771. doi: 10.3321/j.issn:0001-5733.1996.06.006 |
[36] | 詹文欢, 钟建强, 丘学林, 等.南海及邻域现代构造应力场的数值模拟[J].华南地震, 1992, 12(3):11-20. |
[37] | 臧绍先, 宁杰远.菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J].地球物理学报, 2002, 45(2):188-197. doi: 10.3321/j.issn:0001-5733.2002.02.005 |
[38] | 许忠淮, 吴少武.南黄海和东海地区现代构造应力场特征的研究[J].地球物理学报, 1997, 40(6):773-781. doi: 10.3321/j.issn:0001-5733.1997.06.006 |
[39] | Zoback M L, Zoback M D.Tectonic stress field of the continental United States[J].Geophysical framework of the continental United States:Geological Society of America Memoir, 1989, 172:523-539. |
[40] | 徐纪人, 赵志新.中国大陆地壳应力场与构造运动区域特征研究[J].地球物理学报, 2008, 51(3):770-781. doi: 10.3321/j.issn:0001-5733.2008.03.018 |
[41] | 谢富仁, 崔效锋, 赵建涛, 等.中国大陆及邻区现代构造应力场分区[J].地球物理学报, 2004, 47(4):654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016 |
The stress pattern of the northern hemisphere continental crust (a) and the meshing grids and boundary conditions for the 3D finite element model (b)
Focal mechanism solution of northern hemisphere plate (1976—2018) (a), horizontal projections of the P and T axesfor focal mechanism solution (b), the horizontal maximum principal compressive stress (σ3) (c) and the horizontal maximum principal tensile stress (σ1) (d)
Velocity vector map of thenorthern hemisphere continental crust (a), differential stress distribution cloud map (b), maximum principal compressive stress (σ3) distribution cloud map (c) and maximum principal tensile stress (σ1) distribution cloud map (d)