2020 Vol. 39, No. 7
Article Contents

WANG Bin, QIN Xianghui, CHEN Qunce, SUN Dongsheng. Measurement results of in-situ stress in Guyuan area of Ningxia on the southwest margin of Ordos block and its causation analysis[J]. Geological Bulletin of China, 2020, 39(7): 983-994.
Citation: WANG Bin, QIN Xianghui, CHEN Qunce, SUN Dongsheng. Measurement results of in-situ stress in Guyuan area of Ningxia on the southwest margin of Ordos block and its causation analysis[J]. Geological Bulletin of China, 2020, 39(7): 983-994.

Measurement results of in-situ stress in Guyuan area of Ningxia on the southwest margin of Ordos block and its causation analysis

More Information
  • The southwestern margin of the Ordos block has experienced many great earthquakes with complicated tectonic deformation and tectonic activities.In order to understand in-situ stress environment of southwestern margin of the Ordos block and to evaluate the seismic risk, the authors carried out the in-situ stress measurement by hydraulic fracturing in two boreholes in the Guyuan area of Ningxia.Combined with other measured data and focal mechanism solutions, the authors discussed the tectonic stress field characteristics of the southwestern margin of the Ordos block.Some conclusions have been reached:(1) The results show that the relationship of principal stress of the two boreholes in the study area is SH > Sv > Sh, belonging to the strike-slip stress state.The azimuth of maximum horizontal principal stress near the borehole is N59°W; however, it is different from the P-axis orientation of focal mechanism solutions on the northeastern margin of the Tibetan Plateau.It is considered that the formation of the NWW strike-slip shear stress environment on the southwestern margin of the Ordos block is mainly affected by the Haiyuan fault and Liupanshan fault zone.The current stress environment may be the result of the combined effect of local structure and regional tectonic stress fields.(2) The crustal activity in the study area is discussed using the Mohr-Coulomb criterion and Byerlee's law under the premise that the friction coefficient is 0.6~1.0.The in-situ stress state of the southwestern margin of the Ordos block has not reached the sliding critical condition of the shallow fault and is in a relatively stable crustal stress state.The results have great significance for analysis of active faults as well as assessment of the regional geological environment and geological disasters prevention.

  • 加载中
  • [1] 盛书中, 万永革, 黄骥超, 等.应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果[J].地球物理学报, 2015, 58(2):436-452.

    Google Scholar

    [2] 郭祥云, 蒋长胜, 王晓山, 等.鄂尔多斯块体周缘中小地震震源机制及应力场特征[J].大地测量与地球动力学, 2017, 37(7):675-685.

    Google Scholar

    [3] 薛宏运, 鄢家全.鄂尔多斯地块周围的现代地壳应力场[J].地球物理学报, 1984, 27(2):144-152. doi: 10.3321/j.issn:0001-5733.1984.02.004

    CrossRef Google Scholar

    [4] 张培震.中国大陆岩石圈最新构造变动与地震灾害[J].第四纪研究, 1999, 19(5):404-413. doi: 10.3321/j.issn:1001-7410.1999.05.003

    CrossRef Google Scholar

    [5] 邓起东, 尤惠川.鄂尔多斯周缘断陷盆地带的构造活动特征及其形成机制, 现代地壳运动研究[M].北京:地震出版社, 1985:58-78.

    Google Scholar

    [6] 徐锡伟, 程国良, 马杏垣, 等.华北及其邻区块体转动模式和动力来源[J].地球科学, 1994, 19(2):129-138. doi: 10.3321/j.issn:1000-2383.1994.02.005

    CrossRef Google Scholar

    [7] 陈强森, 鲍学伟, 徐树斌, 等.利用背景噪声反演鄂尔多斯块体及其南缘地区地壳速度结构[J].高校地质学报, 2013, 19(3):504-512. doi: 10.3969/j.issn.1006-7493.2013.03.012

    CrossRef Google Scholar

    [8] 张培震, 邓起东, 张竹琪, 等.中国大陆的活动断裂、地震灾害及其动力过程[J].中国科学:地球科学, 2013, 43(10):1607-1620.

    Google Scholar

    [9] 张培震, 张会平, 郑文俊, 等.东亚大陆新生代构造演化[J].地震地质, 2014, 36(3):574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003

    CrossRef Google Scholar

    [10] Wang C Y, Sandvol E, Zhu L, et al.Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications[J].Earth and Planetary Science Letters, 2014, 387:198-211. doi: 10.1016/j.epsl.2013.11.033

    CrossRef Google Scholar

    [11] 丰成君, 陈群策, 李国歧, 等.青藏高原东南缘丽江-剑川地区地应力测量与地震危险性[J].地质通报, 2014, 33(4):524-534. doi: 10.3969/j.issn.1671-2552.2014.04.009

    CrossRef Google Scholar

    [12] 李孟銮, 赵知军.宁夏地区现代构造应力场及其与地震活动的关系[J].地震研究, 1986, 9(3):33-48.

    Google Scholar

    [13] 单修政, 徐世芳, 段峰.鄂尔多斯周缘地带未来强震发生地区初探[J].华北地震科学, 2002, 20(1):10-15. doi: 10.3969/j.issn.1003-1375.2002.01.002

    CrossRef Google Scholar

    [14] 赵知军, 刘秀景, 康凌燕.宁夏及邻近地区震源机制解特征[J].西北地震学报, 2002, 24(2):162-166.

    Google Scholar

    [15] 范俊喜, 马瑾, 刁桂苓.由小震震源机制解得到的鄂尔多斯周边构造应力场[J].地震地质, 2003, 25(1):88-99. doi: 10.3969/j.issn.0253-4967.2003.01.009

    CrossRef Google Scholar

    [16] 张辉, 刘小凤, 赵凌云.由多个震源机制解分析甘肃及边邻地区应力场特征[J].华南地震, 2007, 27(2):33-39. doi: 10.3969/j.issn.1001-8662.2007.02.005

    CrossRef Google Scholar

    [17] 刘芳, 王晓山, 杨雅琼.内蒙古中西部地区小震震源机制解分析[J].大地测量与地球动力学, 2010, 30(S1):7-11.

    Google Scholar

    [18] Zoback M D, Healy J H.Friction, faulting and in-situ stress[J].Annales Geophsicae, 1984, 2:689-698.

    Google Scholar

    [19] Byerlee J.Friction of rocks[J].Pure and Applied Geophysics, 1978, 116(4/5):615-626. doi: 10.1007/BF00876528

    CrossRef Google Scholar

    [20] 王锋, 赵红格.鄂尔多斯地块西部构造研究中几个值得注意的问题[J].中国地质, 2007, 34(3):392-399. doi: 10.3969/j.issn.1000-3657.2007.03.004

    CrossRef Google Scholar

    [21] 邓起东, 程绍平, 闵伟, 等.鄂尔多斯块体新生代构造活动和动力学的讨论[J].地质力学学报, 1999, 5(3):13-21. doi: 10.3969/j.issn.1006-6616.1999.03.003

    CrossRef Google Scholar

    [22] 张岳桥, 廖昌珍, 施炜, 等.鄂尔多斯盆地周边地带新构造演化及其区域动力学背景[J].高校地质学报, 2006, 12(3):285-297. doi: 10.3969/j.issn.1006-7493.2006.03.001

    CrossRef Google Scholar

    [23] Tapponnier P, Peltzer G, Le Dain A Y, et al.Propagating extrusion tectonics in asia:new insights from simple experiments with plasticine[J].Geology, 1982, 10(12):611. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    CrossRef Google Scholar

    [24] Peltzer G, Tapponnier P, Zhang Z T, et al.Neogene and quaternary faulting in and along the Qinling Shan[J].Nature, 1985, 317(6037):500-505. doi: 10.1038/317500a0

    CrossRef Google Scholar

    [25] Zhang Y Q, Vergely P, Mercier J L.Pliocene-Quaternary faulting pattern and left-slip propagation tectonics in North China[J].Episodes, 1999, 22(2):84-88.

    Google Scholar

    [26] Uyeda S, Kanamori H.Back-arc opening and the mode of subduction[J].Journal of Geophysical Research Solid Earth, 1979, 84(B3):1049-1061. doi: 10.1029/JB084iB03p01049

    CrossRef Google Scholar

    [27] Northrup C J, Royden L H, Burchfiel B C.Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J].Geology, 1995, 23(8):719-722.

    Google Scholar

    [28] Tian X, Teng J, Zhang H, et al.Structure of crust and upper mantle beneath the ordos block and the yinshan mountains revealed by receiver function analysis[J].Physics of the Earth & Planetary Interiors, 2011, 184(3):186-193.

    Google Scholar

    [29] 刘兴旺, 袁道阳, 吴赵, 等.六盘山断裂带活动性差异及其对六盘山隆升的影响[J].第四纪研究, 2016, 36(4):898-906.

    Google Scholar

    [30] 李新男.鄂尔多斯西南缘活动构造几何图像、运动特征及构造变形模式[J].国际地震动态, 2018, 473(5):46-48.

    Google Scholar

    [31] 徐锡伟, 于贵华, 陈桂华, 等.青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J].地震地质, 2007, 29(2):201-207. doi: 10.3969/j.issn.0253-4967.2007.02.002

    CrossRef Google Scholar

    [32] 李清河, 郭守年, 吕德徽.鄂尔多斯西缘与西南缘深部结构与构造[M].北京:地震出版社, 1999:1-257.

    Google Scholar

    [33] 孟庆筱, 景鹏旭, 何申海, 等.GPS约束下陇西地区断裂带现今滑动速率的非连续接触模拟研究[J].大地测量与地球动力学, 2018, 38(12):1227-1231.

    Google Scholar

    [34] 王海燕, 高锐, 尹安, 等.深地震反射剖面揭示的海原断裂带深部几何形态与地壳形变[J].地球物理学报, 2012, 55(12):3902-3909. doi: 10.6038/j.issn.0001-5733.2012.12.003

    CrossRef Google Scholar

    [35] 孙赫, 徐晶, 柳皓元.基于InSAR的广义海原断裂带中东段现今深部运动特征[J].大地测量与地球动力学, 2017, 37(11):1141-1145.

    Google Scholar

    [36] 许英才, 高原, 石玉涛, 等.鄂尔多斯块体西缘地壳介质各向异性:从银川地堑到海原断裂带[J].地球物理学报, 2019, 62(11):4239-4258. doi: 10.6038/cjg2019M0309

    CrossRef Google Scholar

    [37] 杜方, 闻学泽, 冯建刚, 等.六盘山断裂带的地震构造特征与强震危险背景[J].地球物理学报, 2018, 61(2):545-559.

    Google Scholar

    [38] 邓起东, 张维岐.海原走滑断裂带及其尾端挤压构造[J].地震地质, 1989, 11(1):1-14.

    Google Scholar

    [39] Haimson B C, Cornet F H.ISRM suggested methods for rockstress estimation-Part 3:hydraulic fracturing(HF)and/orhydraulic testing of pre-existing fractures(HTPF)[J].International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7/8):1011-1020.

    Google Scholar

    [40] Haimson B C, Rummel F.Hydrofracturing stress measurements in the Iceland research drilling project drill hole at Reydarfjordur, Iceland[J].Journal of Geophysical Research:Solid Earth, 1982, 87(B8):6631-6649. doi: 10.1029/JB087iB08p06631

    CrossRef Google Scholar

    [41] Zoback M D, Apel R, Baumgärtner J, et al.Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole[J].Nature 1993, 365:633-635. doi: 10.1038/365633a0

    CrossRef Google Scholar

    [42] Zhao X G, Wang J, Qin X H, et al.In-situ stress measurements and regional stress field assessment in the Xinjiang candidate area for China's HLW disposal[J].Engineering geology, 2015, 197:42-56.

    Google Scholar

    [43] 陈群策, 丰成君, 孟文, 等.5·12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报, 2012, 55(12):3923-3932. doi: 10.6038/j.issn.0001-5733.2012.12.005

    CrossRef Google Scholar

    [44] Aamodt L, Kuriyagawa M.Measurement of instantaneous shut in pressure in crystalline rock[C]//Monterey C A.Presented at the Workshop on Hydraulic Fracturing Stress Measurements.1981, 218(4): 715-716.

    Google Scholar

    [45] Hayashi K, Haimson B C.Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ minimum compressive stress[J].Journal of Geophysical Research, 1991, 96(B11):18311-18321. doi: 10.1029/91JB01867

    CrossRef Google Scholar

    [46] Hayashi K, Sakurai I.Interpretation of hydraulic fracturing shut-in curves for tectonic stress measurements[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(6):477-482. doi: 10.1016/0148-9062(89)91424-1

    CrossRef Google Scholar

    [47] 丰成君, 陈群策, 吴满路, 等.水压致裂应力测量数据分析——对瞬时关闭压力Ps的常用判读方法讨论[J].岩土力学, 2012, 33(7):2149-2159. doi: 10.3969/j.issn.1000-7598.2012.07.035

    CrossRef Google Scholar

    [48] Meng W, Chen Q C, Zhao Z, et al.Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau[J].Tectonophysics, 2015, 656:1-19.

    Google Scholar

    [49] Tan C, Wang R, Sun Y, et al.Numerical modelling estimation of the'tectonic stress plane'(TSP)beneath topography with quasi-U-shaped valleys[J].International Journal of Rock Mechanics and Mining Sciences, 2004, 2(41):303-310.

    Google Scholar

    [50] 黄禄渊, 杨树新, 崔效锋, 等.华北地区实测应力特征与断层稳定性分析[J].岩土力学, 2013, 34(S1):204-213.

    Google Scholar

    [51] 杨树新, 姚瑞, 崔效锋, 等.中国大陆与各活动地块、南北地震带实测应力特征分析[J].地球物理学报, 2012, 55(12):4207-4217. doi: 10.6038/j.issn.0001-5733.2012.12.032

    CrossRef Google Scholar

    [52] 王艳华, 崔效锋, 胡幸平, 等.基于原地应力测量数据的中国大陆地壳上部应力状态研究[J].地球物理学报, 2012, 55(9):3016-3027.

    Google Scholar

    [53] 景锋, 盛谦, 张勇慧, 等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报, 2007, 26(10):2057-2062.

    Google Scholar

    [54] Anderson E M.The dynamics of faulting[J].Transactions of the Edinburgh Geological Society, 1905, 8(3):387-402.

    Google Scholar

    [55] Wang Q.Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J].Science, 2001, 294(5542):574-577.

    Google Scholar

    [56] 徐婉桢, 孟国杰, 苏小宁.基于GPS观测的六盘山断裂震间闭锁特征研究[J].地震, 2016, 36(3):14-24.

    Google Scholar

    [57] 谢富仁, 陈群策, 崔效锋, 等.中国大陆地壳应力环境基础数据库[J].地球物理学进展, 2007, 22(1):131-136. doi: 10.3969/j.issn.1004-2903.2007.01.018

    CrossRef Google Scholar

    [58] 牛琳琳, 丰成君, 张鹏, 等.鄂尔多斯地块南缘地应力测量研究[J].地质力学学报, 2018, 24(1):25-34.

    Google Scholar

    [59] 孟召平, 蓝强, 刘翠丽, 等.鄂尔多斯盆地东南缘地应力, 储层压力及其耦合关系[J].煤炭学报, 2013, (1):122-128.

    Google Scholar

    [60] 陈小斌, 臧绍先, 刘永岗, 等.鄂尔多斯地块的现今水平运动状态及其与周缘地块的相互作用[J].中国科学院大学学报, 2005, 22(3):309-314.

    Google Scholar

    [61] Su S, Stephansson O.Effect of a fault on in situ stresses studied by the distinct element method[J].International Journal of Rock Mechanics and Mining Sciences, 1999, 8(36):1051-1056.

    Google Scholar

    [62] Lin W, Yeh E C, Ito H, et al.Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi, Taiwan, earthquake[J].Geophysical Research Letters, 2007, 34(16).

    Google Scholar

    [63] Hudson J A, Harrison J P.Engineering rock mechanics:an introduction to the principles[M].Netherlands:Elsevier Science and Technology, 2000:1-456.

    Google Scholar

    [64] Hickman S, Zoback M.Stress orientations and magnitudes in the SAFOD pilot hole[J].Geophysical Research Letters, 2004, 31(15):1-4.

    Google Scholar

    [65] 许英才, 曾宪伟, 许文俊, 等.基于台阵的青藏高原东北缘海原-六盘山断裂带及邻区地壳结构研究[J].中国地震, 2018, 34(3):101-114.

    Google Scholar

    [66] 秦向辉, 陈群策, 谭成轩, 等.龙门山断裂带西南段现今地应力状态与地震危险性分[J].岩石力学与工程学报, 2013, 32(1):2870-2876.

    Google Scholar

    [67] 张鹏, 秦向辉, 丰成君, 等.郯庐断裂带山东段深孔地应力测量及其现今活动性分析[J].岩土力学, 2013, 34(8):2329-2335.

    Google Scholar

    [68] Zoback M D, Healy J H.In situ stress measurements to 3.5 km depth in the Cajon Pass Scientific Research Borehole:Implications for the mechanics of crustal faulting[J].Journal of Geophysical Research, 1992, 97(B4):5039-5057. doi: 10.1029/91JB02175

    CrossRef Google Scholar

    [69] 崔笃信, 郝明, 李煜航, 等.鄂尔多斯块体周缘地区现今地壳水平运动与应变[J].地球物理学报, 2016, 59(10):3646-3661. doi: 10.6038/cjg20161012

    CrossRef Google Scholar

    [70] Liao C T.Stress change near the Kunlun fault before and after the Ms 8.1 Kunlun earthquake[J].Geophysical Research Letters, 2003, 30(20):2027.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(735) PDF downloads(3) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint