2020 Vol. 39, No. 9
Article Contents

YAN Tao, XIN Houtian, WEI Yansheng, YANG Wubao, LI Zhengyu. A new thinking on the process of ocean-continent transition in Beishan orogenic belt of Inner Mongolia: Evidence from the Devonian arc granite in the south of Dahong Mountain[J]. Geological Bulletin of China, 2020, 39(9): 1341-1366.
Citation: YAN Tao, XIN Houtian, WEI Yansheng, YANG Wubao, LI Zhengyu. A new thinking on the process of ocean-continent transition in Beishan orogenic belt of Inner Mongolia: Evidence from the Devonian arc granite in the south of Dahong Mountain[J]. Geological Bulletin of China, 2020, 39(9): 1341-1366.

A new thinking on the process of ocean-continent transition in Beishan orogenic belt of Inner Mongolia: Evidence from the Devonian arc granite in the south of Dahong Mountain

More Information
  • This paper reports a set of Devonian arc granites firstly found on the south side of Dahong Mountain, the southern side of ophiolite tectonic mélange zone in Hongshi Mountain-Baihe Mountain.This set of arc granites are composed of tonalite, granodiorite and quartz monzonite.The rocks on the whole experienced intense thermodynamic metamorphism and developed permeable mylonitic texture.According to the geochemical characteristics of rocks, the arc granite assemblage can be divided into sodic T1G1 (tonalite+granodiorite) and potassium to potash QM(quartzite).The combination of T1G1 shows the characteristics of the high aluminum(the average content of Al2O3:15.22%, > 15%), and the QM is a set of high potassium calc-alkaline rocks which belong to Zheming type granite with low Sr and high Yb(the average content of Sr is 121.64×10-6, and the average content of Yb is 2.95×10-6).Both of them have the characteristics of obvious enrichment of light rare earth elements(LREE)and large ion lithophile elements(LILEs), obvious depletion of heavy rare earth elements(HREE)and high field strength elements(HFSEs)and obvious "TNT" anomaly(Nb, Ta, Ti depletion).The overall results show that the arc granite assemblage was formed in the background of island arc with high maturity.Besides, zircon U-Pb dating shows that this set of arc granites was emplaced in the Devonian period between 364 Ma and 399 Ma.Combined with the overall spatial and temporal configuration of the region, it is held that this set of arc granites may be the remnant of the Que'ershan island arc(D)in the northern belt of Beishan Mountain.This discovery provides new evidence and clues for the Paleozoic arc-basin evolution system in the north belt of northern Beishan Mountain.

  • 加载中
  • [1] 任纪舜, 姜春发, 张正坤, 等.中国大地构造及其演化[M].北京:科学出版社, 1980:1-124.

    Google Scholar

    [2] 李春昱, 王荃.我国北部边陲及邻区古板块构造与欧亚大陆的形成[C]//李春昱.中国北方板块构造文集.中国地质科学院沈阳地质矿产研究所, 1983, 1: 3-6.

    Google Scholar

    [3] 左国朝, 何国琦, 李红诚.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990:1-226.

    Google Scholar

    [4] 左国朝, 李茂松.甘蒙北山地区早古生代岩石圈形成与演化[M].兰州:甘肃科学技术出版社, 1996:1-120.

    Google Scholar

    [5] 左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1-15.

    Google Scholar

    [6] 赵茹石, 周振环, 毛金海, 等.甘肃省板块构造单元划分及其构造演化[J].中国区域地质, 1994, 13(1):28-36.

    Google Scholar

    [7] Xiao W J, Mao Q G, Windley B F, et al.Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J].Am.J.Sci., 2010, 310(10):1553-1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [8] 刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J].地学研究, 1995, 28:37-48.

    Google Scholar

    [9] 李景春, 赵安生, 崔惠文.北山北带地质构造特征[J].贵金属地质, 1996, 5(1):59-68.

    Google Scholar

    [10] 何世平, 任秉琛, 姚文光, 等.甘肃内蒙古北山地区构造单元划分[J].西北地质, 2002, 35(4):30-40.

    Google Scholar

    [11] 何世平, 周会武, 任秉琛, 等.甘肃内蒙古北山地区古生代地壳演化[J].西北地质, 2005, 38(3):6-15.

    Google Scholar

    [12] 聂凤军, 江思宏, 白大明, 等.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002:1-499

    Google Scholar

    [13] 龚全胜, 刘明强, 梁明宏, 等.北山造山带大地构造相及构造演化[J].西北地质, 2003, 36(1):11-17.

    Google Scholar

    [14] 魏志军, 黄增保, 金霞, 等.甘肃红石山地区蛇绿混杂岩地质特征[J].西北地质, 2004, 37(2):13-18.

    Google Scholar

    [15] 杨合群, 李英, 李文明, 等.北山成矿构造背景概论[J].西北地质, 2008, 41(1):22-28.

    Google Scholar

    [16] 杨合群, 李英, 赵国斌, 等.北山蛇绿岩特征及构造属性[J].西北地质, 2010, 43(1):26-36.

    Google Scholar

    [17] 徐学义, 何世平, 王洪亮, 等.中国西北部地质概论——秦岭、祁连、天山地区[M].北京:科学出版社, 2008:1-347.

    Google Scholar

    [18] 李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版), 2009, 39(4):584-605.

    Google Scholar

    [19] 孙新春, 张雨莲, 高永伟.甘蒙北山北带古生代地壳演化与成矿作用[J].甘肃地质, 2011, 20(2):45-50.

    Google Scholar

    [20] 蔡志慧, 许志琴, 何碧竹, 等.东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程[J].岩石学报, 2012, 28(6):1875-1895.

    Google Scholar

    [21] 李向民, 余吉远, 王国强, 等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质通报, 2012, 31(12):2025-2031.

    Google Scholar

    [22] 贺振宇, 宗克清, 姜洪颖, 等.北山造山带南部早古生代构造演化:来自花岗岩的约束[J].岩石学报, 2014, 30(8):2324-2338.

    Google Scholar

    [23] 孙立新, 张家辉, 任邦方, 等.北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J].岩石矿物学杂志, 2017, 36(2):131-147.

    Google Scholar

    [24] 黄增保, 金霞.甘肃红石山地区白山组火山岩地质特征及构造背景[J].甘肃地质, 2006, 15(1):19-24.

    Google Scholar

    [25] 黄增保, 金霞.甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析[J].中国地质, 2006, 33(5):1030-1037.

    Google Scholar

    [26] 王国强, 李向民, 徐学义, 等.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J].岩石学报, 2014, 30(6):1685-1694.

    Google Scholar

    [27] 彭湘萍, 陈高潮, 李玉宏, 等.北山地区红石山蛇绿混杂岩组成及地质意义[J].新疆地质, 2016, 34(2):184-191.

    Google Scholar

    [28] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [29] Anderson T.Correction of common lead U-Pb analyses that do not report 204 Pb[J].Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [30] Ludwig K R.Isoplot v.3.0:A Geochronological Toolkit for Microsoft Excel[J].Berkeley:Berkeley Geochronological Center Special Publication, 2003:1-70.

    Google Scholar

    [31] Martin H, Smithies R H, Rapp R, et al.An overview of adakite, tonalite trondhjemite granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution[J].Lithos, 2005, 79(1):1-24.

    Google Scholar

    [32] Moyen J F, Martin H.Forty years of TTG research[J].Lithos, 2012, 148(1):312-336.

    Google Scholar

    [33] Kay R W.Aleutian magnesian andesites:melts from subducted Pacific Ocean crust[J].Journal of Volcanology and Geothermal Research, 1978, 4(1):117-132.

    Google Scholar

    [34] Defant M J, Drummond M S.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature, 1990, 347(6294):662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [35] Peacock S M, Rushmer T, Thompson A B.Partial melting of subducting oceanic crust[J].Earth and Planetary Science Letters, 1994, 121(1):227-244.

    Google Scholar

    [36] 吴鸣谦, 左梦璐, 张德会, 等.TTG岩套的成因及其形成环境[J].地质评论, 2014, 60(3):503-514.

    Google Scholar

    [37] 冯艳芳, 邓晋福, 肖庆辉, 等.TTG岩石组合的识别:讨论与建议[J].高校地质学报, 2011, 17(3):406-414.

    Google Scholar

    [38] 邓晋福, 刘翠, 冯艳芳, 等.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J].中国地质, 2010, 37(4):1112-1118.

    Google Scholar

    [39] Miyashiro A.Volcanic rock series in island arcs and activecontinental margins[J].American J.Science, 1974, 274:321-355. doi: 10.2475/ajs.274.4.321

    CrossRef Google Scholar

    [40] Irvine T N, Baragar W R A.A guide to the chemical classification of the common volcanic rocks[J].Canadian Journal of Earth Sciences, 1971, 8:523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [41] Frost B R, Barnes C G, Collins W J, et al.A geochemical classification for granite rocks[J].J.Petrol., 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [42] Rollinson H R.Using Geochemical Data:Evaluation, Presentation, Interpretation[M].London:Longman Group, 1993:1-352.

    Google Scholar

    [43] Boynton W V.Geochemistry of the rare earth elements: Meteorite study[C]//Henderson P.Rare Earth Element Geochemistry.Developments in Geochemistry 2.Amsterdam: Elsevier, 1984: 63-114.

    Google Scholar

    [44] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in Oceanic Basins.Spec.Publ.Geol. Soc. Lond., 1989, 42: 313-345.

    Google Scholar

    [45] Ionov D A, Hofmann A W. Nb-Ta-Ti rich mantle am phiboles and micas:implications for subduction-related metasomatie trace element fraetionations[J].EPSL, 1995, 131:341-356. doi: 10.1016/0012-821X(95)00037-D

    CrossRef Google Scholar

    [46] Kelemen P.One view of the geochemistry of subduction-related magmatic arcs with emphasis on primitive andesite and lower crust[C]//Holland H D, Turekian K K.Treatise on geochemistry.Amsterdan: Elsevier, 2003: 612-615, 626-627.

    Google Scholar

    [47] Zhao Z H.How to use the trace element diagrams to discriminate tectonic settings[J].Geotectonica et Metallogenia, 2007, 31(1):92-103.

    Google Scholar

    [48] 李长民.锆石成因矿物学与锆石微区定年综述[J].地质调查与研究, 2009, 33(3):161-174.

    Google Scholar

    [49] 张旗, 王焰, 熊小林, 等.埃达克岩和花岗岩:挑战和机遇[M].北京:中国大地出版社, 2008:1-344.

    Google Scholar

    [50] 张旗, 金惟俊, 李承东, 等.再论花岗岩按照Sr-Yb的分类:标志[J].岩石学报, 2010, 31(1):92-103.

    Google Scholar

    [51] Arth J G, Hanson G N.Geochemistry and origin of the early Precambrian crust of northeastern Minnesota[J].Geochimica et Cosmochimica Acta, 1975, 39(3):325-362. doi: 10.1016/0016-7037(75)90200-8

    CrossRef Google Scholar

    [52] Condie K C, Hunter D R.Trace element geochemistry of Archean granitic rocks from the Barberton region, South Africa[J].Earth and Planetary Science Letters, 1976, 29(2):389-400. doi: 10.1016/0012-821X(76)90144-8

    CrossRef Google Scholar

    [53] Jahn B M, Glikson A Y, Peucat J J, et al.REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia:implications for early crustal evolution[J].Geochimica et Cosmochimica Acta, 1981, 45:1633-1652. doi: 10.1016/S0016-7037(81)80002-6

    CrossRef Google Scholar

    [54] Jahn B M, Vidal P, Kröner A.Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland:a case for long crustal residence time[J].Contributions to Mineralogy and Petrology, 1984, 86(4):398-408. doi: 10.1007/BF01187143

    CrossRef Google Scholar

    [55] Martin H.Effect of steeper Archean geothermal gradient on geochemistry of subduction zone magmas[J].Geology, 1986, 14(9):753-756. doi: 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

    CrossRef Google Scholar

    [56] Martin H.Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland:major and trace element geochemistry[J].Journal of Petrology, 1987, 28(5):921-953. doi: 10.1093/petrology/28.5.921

    CrossRef Google Scholar

    [57] Deng J F, Flower M F J, Liu C, et al.Nomeuclature, diagnosis and origin of high-magnesian andesites (HMA) and magnesian andesites(MA):A review from petrographic and experimental data[J].Geochimica et Cosmochimica Acta, 2009, 73(13):A279.

    Google Scholar

    [58] Johannes W, Holtz F.Petrogenesis and experimental petrology of granitic rocks[M].Berlin:Springer, 1996:1-335.

    Google Scholar

    [59] Wyllie P J, Osmaston M F, Morrison M A.Constraints imposed by experimental petrology on possible and impossible magma sources and products[J].Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, 1984:A310:439-456.

    Google Scholar

    [60] 冯艳芳, 姚晓峰, 魏友卿, 等.长乐-南澳构造带燕山期(J-K)TTG岩石组合及其地质意义[J].岩石学报, 2014, 30(11):3315-3333.

    Google Scholar

    [61] 邓晋福, 罗照华, 苏尚国, 等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004:85-122.

    Google Scholar

    [62] Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of graniticrock[J].J.Petrol., 1984, 25:956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [63] Pearce J A, Lippard S J, Roberts S.Characteristics and tectonic sigificance of supra-subduction zone ophiolites[C]//Kokelaar B P, Howells M F.Marginal Basin Geology.Oxford: Geol.Soc.Blackwell Sci.Pub., 1984: 77-94.

    Google Scholar

    [64] 邓晋福, 肖庆辉, 苏尚国, 等.火成岩组合与构造环境:讨论[J].高校地质学报, 2007, 13(3):392-402.

    Google Scholar

    [65] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989, 101(5):635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [66] 徐学义, 李向民, 马中平, 等.北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICP-MS锆石UPb年龄的证据[J].地质学报, 2006, 80(8):1168-1176.

    Google Scholar

    [67] 徐学义, 夏林圻, 马中平, 等.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J].岩石学报, 2006, 22(1):83-94.

    Google Scholar

    [68] Ao S J, Xiao W J, Han C M, et al.Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China:Implications for late Paleozoic tectonic evolution of the southern Altaids[J].Gondwana Research, 2010, 18:466-478. doi: 10.1016/j.gr.2010.01.004

    CrossRef Google Scholar

    [69] Ao S J, Xiao W J, Han C M, et al.Cambrian to Early Silurian ophiolite and accretionary processes in the Beishan collage, NW China:Implications for the architecture of the southern Altaids[J].Geological Magazine, 2012, 149(4):606-625. doi: 10.1017/S0016756811000884

    CrossRef Google Scholar

    [70] Dilek Y.Ophiolites in Earth History[C]//Dilek Y, Robinson P T.Ophiolites in Earth History.Geological Society of London Special Publications, 2003, 218: 9-19.

    Google Scholar

    [71] Dilek Y.Ophiolite concept and its evolution[C]//Dilek Y, Newcomb S.Ophiolite concept and the evolution of geological thought.Geological Society of America Special Paper, 2003, 373: 1-16.

    Google Scholar

    [72] Dilek Y, Furnes H.Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J].Geological Society of America Bulletin, 2011, 123:387-411. doi: 10.1130/B30446.1

    CrossRef Google Scholar

    山西省地质调查院.内蒙古1: 5万额勒斯图浑迪、哈布特盖嘎顺、骆驼口东、青山、大红山、双红山幅区域地质矿产调查报告.2017.

    Google Scholar

    甘肃省地质局第二区域地质测量队.1: 20万红石山幅区域地质调查报告.1971.

    Google Scholar

    甘肃省地质调查院.1: 25万红宝石幅区域地质调查报告.2004.

    Google Scholar

    内蒙古地质矿产勘查院.内蒙古1: 5万红梁子、沙多山、红旗山、蓬勃山幅区域地质矿产调查报告.2016.

    Google Scholar

    内蒙古地质矿产勘查院.内蒙古1: 5万风雷山、额默勒乌拉、锥西口、平台山幅区域地质矿产调查报告.2016.

    Google Scholar

    内蒙古地质矿产勘查院.内蒙古1: 5万少斜沟、白梁、白疙瘩、1586.4高地幅区域地质矿产调查报告.2017.

    Google Scholar

    中国地质调查局天津地质调查中心.内蒙古1: 5万哈珠、哈珠东山、哈珠南山、砾石滩幅区域地质矿产调查报告.2017.

    Google Scholar

    河北省区域地质调查院.内蒙古1: 5万黑红山、额勒根乌兰乌拉、园包山幅区域地质矿产调查报告.2018.

    Google Scholar

    山西省地质调查院.内蒙古1: 5万沙拉音霍拉伊谷地、平顶山、沙林浩来、甜水井幅区域地质矿产调查报告.2018.

    Google Scholar

    内蒙古地质矿产勘查院.内蒙古1: 5万独龙包、苦泉山、吉格德查干戈壁幅区域地质矿产调查报告.2018.

    Google Scholar

    中国地质调查局天津地质调查中心.内蒙古1: 5万清河沟、红柳峡幅区域地质矿产调查报告.2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(2)

Article Metrics

Article views(954) PDF downloads(7) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint