2020 Vol. 39, No. 9
Article Contents

LI Min, REN Bangfang, DUAN Xiaolong, TIAN Jian, DUAN Lianfeng, NIU Wenchao. Petrogenesis of Triassic granites in Xiaohongshan area, Beishan orogenic belt: Constraints from zircon U-Pb ages and Hf isotopes[J]. Geological Bulletin of China, 2020, 39(9): 1422-1435.
Citation: LI Min, REN Bangfang, DUAN Xiaolong, TIAN Jian, DUAN Lianfeng, NIU Wenchao. Petrogenesis of Triassic granites in Xiaohongshan area, Beishan orogenic belt: Constraints from zircon U-Pb ages and Hf isotopes[J]. Geological Bulletin of China, 2020, 39(9): 1422-1435.

Petrogenesis of Triassic granites in Xiaohongshan area, Beishan orogenic belt: Constraints from zircon U-Pb ages and Hf isotopes

More Information
  • In this paper, zircon U-Pb ages, Hf isotopes and whole rock geochemical compositions of Triassic granite-porphyry in Xiaohongshan area of Beishan orogenic belt were systematically studied.Zircon LA-MC-ICP-MS U-Pb dating results show that the two ages of granite-porphyry are 211.8±1.6 Ma(the confidence value is 95%, n=24, MSDW=2.4)and 205.9±1.7 Ma(the confidence value is 95%, n=23, MSDW=2.9)respectively, which intruded at the late stage of Late Triassic.The granite-porphyry in the study area is characterized by high silicon, rich alkali, quasi-aluminum, and poor calcium, magnesium, and iron.It belongs to the series of high potassium calc-alkaline to potassic basanite with high degree of differentiation.It belongs to highly differentiated Ⅰ-type granite.It is enriched in Rb, Th, U, La, Ce and other large ion lithophile elements and depleted in Nb, P, Ti, Ba and Sr. It is characterized by low Sr, high Yb and Y with obvious negative europium anomaly.The εHf(t)values range from -1.43 to 9.93, which are relatively high, and the Hf isotopic crustal model ages range from 610 Ma to 1335 Ma, indicating that the granite-porphyry was derived from the juvenile crust with mantle imprint mixed with remelting old crust. According to the data obtained in this paper and other regional geological data acquired recently, it is proposed that, under the post-orogenic extension system, the heat brought by the underplating of basic magma caused the partial melting of the juvenile crust from Neoproterozoic to Paleozoic, and suffered magma contamination of the remelting of the old crust of Lower Proterozoic.In addition, the magma was finally emplaced in the middle and upper crust after fractional crystallization, forming the the Late Triassic granite-porphyry in the study area.

  • 加载中
  • [1] Xiao W J, Mao Q G, Windley B F, et al.Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J].American Journal of Science, 2010, 310:1553-1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [2] Liu X C, Chen B, Jahn B M, et al.Early Paleozoic(ca.465 Ma)eclogites from Beishan(NW China)and their bearing on the tectonic evolution of the southern Central Asian Orogenic Belt[J].Journal of Asian Earth Sciences, 2011, 42(4):715-731.

    Google Scholar

    [3] Guo Q Q, Xiao W J, Hou Q L, et al.Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt[J].Lithos, 2014, 184-187(1):361-378.

    Google Scholar

    [4] 江思宏, 聂凤军.北山地区花岗岩类成因的Nd同位素制约[J].地质学报, 2006, 80(6):826-842.

    Google Scholar

    [5] Su B X, Qin K Z, Sun H, et al.Subduction-induced mantle heterogeneity beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes[J].Lithos, 2012, 134-135(2):41-51.

    Google Scholar

    [6] Zhang W, Pease V, Wu T R, et al.Discovery of an adakite-like pluton near Dongqiyishan(Beishan, NW China)-Its age and tectonic significance[J].Lithos, 2012, 142-143(6):148-160.

    Google Scholar

    [7] Li S, Wilde S A, Wang T.Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China:Petrogenesis and tectonic implications[J].Lithos, 2013, 179:99-119. doi: 10.1016/j.lithos.2013.08.002

    CrossRef Google Scholar

    [8] 李敏, 任邦方, 滕学建, 等.内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义[J].地球科学, 2018, 43(12):4586-4605.

    Google Scholar

    [9] 李敏, 辛后田, 任邦方, 等.内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J].地球科学, 2019, 44(1):328-343.

    Google Scholar

    [10] 潘志龙, 王硕, 邱振, 等.内蒙古北山地区咸水沟一带早石炭世红柳园组火山岩地球化学、锆石U-Pb年龄及Hf同位素特征[J].地质调查与研究, 2017, 40(02):99-108.

    Google Scholar

    [11] 刘明强, 王建军, 代文军.甘肃北山红石山地区马鞍山北花岗岩体的单颗粒锆石U-Pb年龄及地质意义[J].岩石矿物学杂志, 2006, 25(6):473-479.

    Google Scholar

    [12] 李舢, 王涛, 童英.中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境[J].岩石矿物学杂志, 2010, 29(6):642-662.

    Google Scholar

    [13] Li S, Wang T, Wilde S A, et al.Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J].Lithos, 2012, 134-135:123-145. doi: 10.1016/j.lithos.2011.12.005

    CrossRef Google Scholar

    [14] 杨合群, 赵国斌, 李英, 等.新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J].地质通报, 2012, 31(2/3):413-421.

    Google Scholar

    [15] Zuo G C, Zhang S L, He G Q, et al.Plate Tectonic characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China[J].Tectonophysics, 1991, 188:385-392. doi: 10.1016/0040-1951(91)90466-6

    CrossRef Google Scholar

    [16] 耿建珍, 李怀坤, 张健, 等.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报, 2011, 30(10):1508-1513.

    Google Scholar

    [17] 王树庆, 胡晓佳, 赵华雷.内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩[J].地质调查与研究, 2019, 42(2):81-85.

    Google Scholar

    [18] Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [19] Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].J.Petrol., 2010, 51(1/2):537-571.

    Google Scholar

    [20] Söderlund U, Patchett P J, Veroort J D, et al.The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Percambrian mafic intrusions[J].Earth and Planetary Science Letters, 2004, 219(3/4):311-324.

    Google Scholar

    [21] Bouvier A, Vervoort J D, Patchett P J.The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J].Earth and Planetary Science Letters, 2008, 273(1/2):48-57.

    Google Scholar

    [22] Griffin W L, Pearson N J, Elusive E, et al.The Hf isotopes composition of carbonic mantle:LA-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J].Geochim.Cosmochim.Acta, 2000, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [23] Griffin W L, Wang X, Jackson S E, et al.Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3):237-269.

    Google Scholar

    [24] Koschek G.Origin and significance of the SEM cathodoluminescence from zircon[J].Journal of Microscopy, 1993, 171(3):223-232. doi: 10.1111/j.1365-2818.1993.tb03379.x

    CrossRef Google Scholar

    [25] Williams I S, Buick A, Cartwright I.An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynold region, central Australia[J].J.Metamorphic Geol., 1996, 14(1):29-47.

    Google Scholar

    [26] 吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220.

    Google Scholar

    [27] Whalen J B, Currie K L, Chappell B W.A-Type granites:geochemical characteristics, discrimination and petrogenesis[J].Contrib.Mineral Petrol., 1987, 95:407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [28] 刘昌实, 陈小明, 陈培荣, 等.A型岩套的分类、判别标志和成因[J].高校地质学报, 2003, 9(4):573-591.

    Google Scholar

    [29] Miller C F, McDowell S M, Mapes R W.Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J].Geology, 2003, 31:529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

    CrossRef Google Scholar

    [30] Ameilin Y, Lee D C, Halliiday A N, et al.Nature of the Earth's earliest crust from hafninm isotopes in single detrital zircon[J].Nature, 1999, 399(6733):252-255. doi: 10.1038/20426

    CrossRef Google Scholar

    [31] Bleousova E A, Grifflin W L, O'Reilly S Y.Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:Examples from eastern Australian granitoids[J].Journal of Petrology, 2006, 47(2):329-353. doi: 10.1093/petrology/egi077

    CrossRef Google Scholar

    [32] Kemp A I S, Hawkesworth C J, Foster G L, et al.Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J].Science, 2007, 16:980-983.

    Google Scholar

    [33] Ravikant V, Wu F Y, Ji W Q, et al.U-Pb Age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya[J].Earth and Planetary Science Letters, 2011, 304(3/4):356-368.

    Google Scholar

    [34] Murphy J B, Nance R D.Sm-Nd isotopic systematics as tectonic tracers:an example from West Avalonia in the Canadian Appalachians[J].Earth-Science Reviews, 2002, 59(1/4):77-100.

    Google Scholar

    [35] Kröner A, Kovach V, Belousova E, et al.Reassessment of continental growth during the accretionary history of the Central Asian Orogenie Belt[J].Gondwana Res., 2014, 25:103-125.

    Google Scholar

    [36] Jahn B M, Windley B, Natal'in B, et al.Phanerozoic Continental Growth in Central Asia[J].J.Asian Earth Sci., 2004, 23(5):599-603. doi: 10.1016/S1367-9120(03)00124-X

    CrossRef Google Scholar

    [37] Windley B F, Alexeiev D, Xiao W J, et al.Tectonic models for accretion of the Central Asian Orogenic Belt[J].Journal of the Geological Society, 2007, 164:31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [38] Sun M, Yuan C, Xiao W, et al.Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:Progressive Accretionary history in the Early to Middle Palaeozoic[J].Chem.Geol., 2008, 247:352-383.

    Google Scholar

    [39] Wilhem C, Windley B F, Stampfli G M.The Altaids of Central Asia:A tectonic and evolutionary innovative review[J].Earth_Sci.Rev., 2012, 113:303-341. doi: 10.1016/j.earscirev.2012.04.001

    CrossRef Google Scholar

    [40] Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of Early Neoproterozoic(ca.900 Ma)high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(1459) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint