Citation: | HAN Chaohui, SONG Yucai, LIU Yingchao, HOU Zengqian, CHENG Yang, ZHAI Zhongbao. Characteristics and genesis of the Ahangaran Pb Cu deposit Iran[J]. Geological Bulletin of China, 2020, 39(10): 1625-1638. |
The Ahangaran Pb(Cu) deposit is located in the Sanandaj-Sirjan metamorphic zone of the Zagros orogenic belt, a Cenozoic continental collisional zone between Arabian(south) and Iran(north) blocks. The deposit is hosted in Lower Cretaceous dolomitic limestone and has conformable and lenticular orebodies and bed-crosscutting ore veins. Pre-ore stage of minerals are fine-grained quartz, and ore stage of minerals are composed of dolomite, barite, calcite, coarse-grained quartz, galena, chalcopyrite, pyrite, and tetrahedrite. The study of the fluid inclusions shows that the ore fluids are a Cl--Na+-Ca2+-Mg2+ system, with homogenization temperatures from 108℃ to 210℃ and the salinities from 7%NaCl eq to 29%NaCl eq. Combined with data of C-H-O isotopes from ore stage hydrothermal gangue minerals and associated fluid inclusions, the authors hold that the ore fluids were mainly derived from basinal brine, with or without contribution from magmatic fluids. The mineralization process led to the dissolution of the host carbonate. The δ34S values of barite range from 18.7‰ to 22.7‰, and sulfides range from -3.1‰ to 9.7‰, suggesting that the reduced sulfur was probably the result of biological sulfate reduction(BSR). But this does not exclude the probable contribution of reduced sulfur from thermochemical sulfate reduction(TSR). The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of galena are 18.4083~18.454, 15.6512~15.6548, and 38.5628~38.5515, respectively, which are similar to those of the other Pb-Zn deposits in this region, i.e., the Malayer-Esfahan carbonated-hosted Pb-Zn metallogenic belt. It is suggested that their metals were derived from the same upper crustal rocks. Although the Ahangaran deposit shares some similarities with Mississippi Valley-type(MVT) deposits, the enrichment of ore stage quartz and copper sulfides suggests that the deposit may be classified as a magmatic-related carbonate-replacement-type deposit.
[1] | 张洪瑞, 侯增谦, 杨志明.特提斯成矿域主要金属矿床类型与成矿过程[J].矿床地质, 2010, 29(1):113-133. |
[2] | Reynolds N A, Duncan L.Tethyan Zinc-Lead Metallogeny in Europe, North Africa, and Asia[J].Society of Economic Geologists, 2010, 15:339-365. |
[3] | Hou Z, Zhang H.Geodynamaics and metallogeny of the eastern Tethyan metallogenic domain[J].Ore Geology Reviews, 2015, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026 |
[4] | Alavi M.Tectonics of Zagros Orogenic belt of Iran, new data and interpretation[J].Tectonophysics, 1994, 229:211-238. doi: 10.1016/0040-1951(94)90030-2 |
[5] | Stocklin J.Structural history and tectonics of Iran:A review[J].AAPG.Bull, 1968, 52:1229-1258. |
[6] | Ghazban F, McNutt R H, Schwarcz H P.Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh District, Esfahan area, west-central Iran[J].Economic Geology, 1994, 89(6):1262-1278. doi: 10.2113/gsecongeo.89.6.1262 |
[7] | Zamanian H.Mineralogy, paragenesis and genesis of Ahangaran Ag-Pb deposit, Malayer[D].Unpublished MSc.Thesis, Tehran Tarbiat Moallem University, 1993: 280(In Persian). |
[8] | Ehya F, Lotfi M, Rasa I.Emarat carbonate-hosted Zn-Pb deposit, Markazi Province, Iran:A geological, mineralogical and isotopic(S, Pb) study[J].Journal of Asian Sciences, 2010, 37(2):186-194. |
[9] | Momenzadeh M, Shafighi S, Rastad E, et al.The Ahangaran Lead-Silver Deposit, SE-Malayer, West Central Iran[J].Mineral Deposita(Berl.), 1979, 14:323-341. |
[10] | Nadimi A, Konon A.Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran[J].Journal of Structural Geology, 2012, 40:2-16. doi: 10.1016/j.jsg.2012.04.007 |
[11] | Morley C K, Kongwung B, Julapour A, et al.Structural development of a major late Cenozoic basin and transpressional belt in central Iran:The Central Basin in the Qom-Saveh area[J].Geosphere, 2009, 5(4):325-362. doi: 10.1130/GES00223.1 |
[12] | Davoudian A R, Khalili M, Noorbehsht I, et al.Geochemistry of metabasites in the north of the Shahrekord, Sanandaj-Sirjan Zone, Iran.Neues Jahrbuch für Mineralogie-Abhandlungen[J].Journal of Mineralogy and Geochemistry, 2006, 182(3):291-298. |
[13] | Davoudian A, Genser J, Dachs E, et al.Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran[J].Mineralogy and Petrology, 2008, 92(3/4):393-413. |
[14] | 刘英超, 宋玉财, 侯增谦, 等.伊朗扎格罗斯碰撞造山带马拉耶尔-伊斯法罕碳酸盐岩容矿铅锌成矿带[J].地质学报, 2015, 89(9):1573-1594. |
[15] | Mohajjel M, Fergusson C L.Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan zone, western Iran[J].Journal of Structural Geology, 2000, 22(8):1125-1139. doi: 10.1016/S0191-8141(00)00023-7 |
[16] | Sarkarinejad K, Faghih A, Grasemann B.Transpressional deformations within the Sanandaj-Sirjan metamorphic belt(Zagros mountains, Iran)[J].Journal of Structural Geology, 2008, 30(7):818-826. doi: 10.1016/j.jsg.2008.03.003 |
[17] | Babaahmadi A, Mohajjel M, Eftekhari A, et al.An investigation into the fault patterns in the Chadegan region, west Iran:Evidence for dextral brittle transpressional tectonics in the Sanandaj-Sirjan Zone[J].Journal of Asian Earth Sciences, 2012, 43(1):77-88. doi: 10.1016/j.jseaes.2011.08.012 |
[18] | Nadimi A, Konon A.Gaw-Khuni Basin:An active stepover structure in the Sanandaj-Sirjan zone, Iran[J].Geological Society of America Bulletin, 2012b, 124(3/4):484-498. |
[19] | Safaei H.The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone(Iran)[J].Journal of Asian Earth Sciences, 2009, 35(5):391-400. doi: 10.1016/j.jseaes.2009.01.007 |
[20] | Mazhari S, Bea F, Amini S, et al.The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran:a marker of the end of the collision in the Zagros orogeny[J].Journal of the Geological Society, 2009, 166(1):53-69. doi: 10.1144/0016-76492008-022 |
[21] | Agard P, Omrani J, Jolivet L, et al.Zagros orogeny:a subduction-dominated process[J].Geological Magazine, 2011, 148(5/6):692-725. |
[22] | Berberian F, Berberian M, Tectono-Plutonic Episodes in Iran[M].Geological Survey of Iran, 1981, 52: 566-593. |
[23] | Hall D L, Stemer S M, Bodnar R J.Freezing point depression of NaCl-KCl-H2O Solutions[J].Economic Geology, 1988, 83:197-202. doi: 10.2113/gsecongeo.83.1.197 |
[24] | 韩朝辉, 宋玉财, 刘英超, 等.伊朗Emarat铅锌矿床成矿特征及矿床成因研究[J].地质学报, 2015, 89(9):1595-1606. |
[25] | Clyton R N, O'neil J R, Mayeda T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research, 1972, 77(17):3057-3067. doi: 10.1029/JB077i017p03057 |
[26] | Beane R E.The magmatic-meteoric transition[M].Geothermal Resources Council Special Report, 1983, 13: 245-253. |
[27] | Roedder E.Composition of fluid inclusions[M].US Geological Survey Professional Paper, 1983, 440: 164. |
[28] | 郑永飞, 徐宝龙, 周根陶.矿物稳定同位素地球化学研究[J].地学前缘, 2000, 47(1):34-41. |
[29] | Ohmoto H.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J].Economic Geology, 1972, 67(5):551-578. doi: 10.2113/gsecongeo.67.5.551 |
[30] | Veizer J, Holser W T, Wilgus C K.Correlation of 13C/12C and 34S/32S secular variation.Geochim[J].Cosmochim.Acta, 1980, 44:579-588. doi: 10.1016/0016-7037(80)90250-1 |
[31] | Taylor B E.Magmatic volatiles: Isotope variation of C, H and S reviews in mineralogy[C]//Valley G W, Taylor H P, O'neil J R.Stable Isotopes in High Temperature Geological Process.Washington, D.C.: Mineralogical Society of America, 1986, 16: 185-226. |
[32] | 刘建明, 刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报, 1997, 17(4):448-456. |
[33] | Clayton R N, Friedman I, Graf D L, et al.The origin of saline formation waters:1.Isotopic composition[J].Journal of Geophysical Research, 1966, 71:3869-3882. doi: 10.1029/JZ071i016p03869 |
[34] | Hitchon B, Friedman I.Geochemistry and origin of formation waters in the western Canada sedimentary basin-I.Stable isotopes of hydrogen and oxygen[J].Geochimica et Cosmochimica Acta, 1969, 33:1321-1349. doi: 10.1016/0016-7037(69)90178-1 |
[35] | Kharaka Y K, Berry F A F, Friedman I.Isotopic composition of oil-field brines from Kettleman North Dome, California, and their geologic implications[J].Geochimica et Cosmochimica Acta, 1973, 37:1899-1908. doi: 10.1016/0016-7037(73)90148-8 |
[36] | Taylor H P.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J].Economic Geology, 1974, 69:843-83. doi: 10.2113/gsecongeo.69.6.843 |
[37] | 陈俊, 王鹤年.地球化学[M].北京:科学出版社, 2004. |
[38] | Ferydoun G, Robert H M, Henry S.Genesis of sediment-Hosted Zn-Pb-Ba Deposits in the Irankuh District, Esfahan Area, West-Central Iran[J].Economic Geology, 1994, 89:1262-1278. doi: 10.2113/gsecongeo.89.6.1262 |
[39] | George E, Claypool, William T, et al.The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J].Chemical Geology, 1980, 28:199-260. doi: 10.1016/0009-2541(80)90047-9 |
[40] | Detmers J, Bruchert V, Habicht K S, et al.Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes[J].Applied and Environmental Microbiology, 2001, 67:888-94. doi: 10.1128/AEM.67.2.888-894.2001 |
[41] | Ohmoto H, Kaiser C J, Geer K A.Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits[C]//Herbert H K, Ho S E.Stable isotopes and Fluid Processes in Mineralisation.Geol.Dep.Univ.Extens.Univ[J].Western Australia, 1990, 23: 70-120. |
[42] | Machel H G.Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits[J].Carbonates Evaporites, 1989, 4:137-151. doi: 10.1007/BF03175104 |
[43] | Doe B R, Zartman R E.Plumbotectonics1.The Phanerozoic[C]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits 2nd(Ed).Wiley Interscience, 1979: 22-70. |
[44] | Rajabi A, Rastad E, Canet C.Metallogeny of Cretaceous carbonate-hosted Zn-Pb deposits of Iran:geotectonic setting and data integration for future mineral exploration[J].International Geological Review, 2012, 54(14):1649-1672. doi: 10.1080/00206814.2012.659110 |
[45] | Leach D L, Sangster D F, Kelley K D, et al.Sediment-hosted lead-zinc deposits:A global perspective[J].Economic Geology, 2005, 100:561-607. |
[46] | Leach D L, Bradley D C, Huston D, et al.Sediment-Hosted Lead-Zinc Deposits in Earth History[J].Economic Geology, 2010, 105(3):593-625. doi: 10.2113/gsecongeo.105.3.593 |
[47] | Paradis S, Hannigan P, Dewing K.Mississippi Valley-type lead-zinc deposits[C]//Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5: 185-203. |
[48] | Plumlee G S, Leach D L, Hofstra A H, et al.Chemical reaction path modeling of ore deposition in Mississippi valley-type Pb-Zn deposits of the Ozark region, U.S.Midcontinent[J].Economic Geology, 1994, 89:1361-1383. doi: 10.2113/gsecongeo.89.6.1361 |
[49] | Dejonghe L, Darras B, Hughes G, et al.Weis D.Isotopic and fluid-inclusion constraints on the formation of polymetallic vein deposits in the central Argentinian Patagonia[J].Mineralium Deposita, 2002, 37(2):158-172. doi: 10.1007/s00126-001-0225-8 |
[50] | Camprubí A, Gonzalez-Partida E, Torres-Tafolla E.Fluid inclusion and stable isotope study of the Cobre-Babilonia polymetallic epithermal vein system, Taxco district, Guerrero, Mexico[J].Journal of Geochemical Exploration, 2006, 89:33-38. doi: 10.1016/j.gexplo.2005.11.011 |
[51] | Bendezú R, Page L, Spikings R, et al.New 40Ar/39Ar alunite ages from the Colquijirca district, Peru:evidence of a long period of magmatic SO2 degassing during formation of epithermal Au-Ag and Cordilleran polymetallic ores[J].Mineralium Deposita, 2008, 43(7):777-789. doi: 10.1007/s00126-008-0195-1 |
Main tectonic elements of Iran and location of the Ahangaran deposit
Fault patterns in central part of the Sanandaj-Sirjan zone and the distribution of major Pb-Zn deposits in the Malayer-Esfahan metallogenic belt
Simplified geological map of the Ahangaran ore district
Geological section of the Ahangaran Pb(Cu) deposit
Mineral assemblage and paragenesis in the Ahangaran Pb (Cu) deposit
Microphotographs of fluid inclusions in hydrothermal quartz in the Ahangaran Pb (Cu) deposit
Histograms of homogenization temperatures and salinities of fluid inclusions in hydrothermal quartz in the Ahangaran Pb (Cu) deposit
Salinity versus homogenization temperature diagram of fluid inclusions in hydrothermal quartz in the AhangaranPb (Cu) deposit
Histogram of sulfur isotopic compositions in the Ahangaran Pb (Cu) deposit
Diagram showing the salinities and homogenization temperatures of fluid inclusions in the Ahangaran Pb (Cu) deposit and Emarat Pb-Zn deposit
δ13C versus δ18O diagram of carbonates in the Ahangaran Pb (Cu) deposit
Plot of δ18OH2O- δD values for the ore-forming fluid in the Ahangaran Pb-Cu deposit
Plot of 206Pb/204Pb versus 207Pb/204Pb of galena from the Ahangaran Pb (Cu) deposit