2020 Vol. 39, No. 8
Article Contents

DU Zezhong, CHENG Zhizhong, YAO Xiaofeng, YU Xiaofei, CHEN Hui, LI Shaohua, BAO Xinglong. Element migration regularity during hydrothermal alteration in the Xiejiagou gold deposit, Eastern Shandong Province[J]. Geological Bulletin of China, 2020, 39(8): 1137-1152.
Citation: DU Zezhong, CHENG Zhizhong, YAO Xiaofeng, YU Xiaofei, CHEN Hui, LI Shaohua, BAO Xinglong. Element migration regularity during hydrothermal alteration in the Xiejiagou gold deposit, Eastern Shandong Province[J]. Geological Bulletin of China, 2020, 39(8): 1137-1152.

Element migration regularity during hydrothermal alteration in the Xiejiagou gold deposit, Eastern Shandong Province

  • The Xiejiagou gold deposit is located between the Jiaojia fault zone and the Zhaoyuan-Pingdu fault zone in northwest Jiaodong.Based on detailed field geological observations and laboratory study, the authors identified the alteration types and spatial zoning of the Xiejiagou gold deposit.In this paper, the authors systematically collected rock samples of different alteration types, and carried out geochemical analysis of rock elements.The Isocon method was used to analyze the element migration law during hydrothermal alternation and its constraint on the properties of ore-forming fluids and mineral precipitation.The alterations of the gold deposit are beresitization of steep quartz veins as well as beresitization and K-feldspathization from the center to both sides; they are K-feldspathization, beresitization, and ferritic lithology with steeply dipping quartz veins from early to late period.The K-feldspathization shows that K-feldspars and biotite replaced the plagioclases and hornblende in the Linglong biotite granite, respectively, the potassium obviously migrated in, silicon slightly migrated in, calcium and magnesium migrated out, and iron migrated slightly out.The beresitization is superimposed on the K-feldspathization, which mainly demonstrates that plagioclase, K-feldspar and biotite were destabilized in the solution containing H+ and HS-, and were replaced by sericite and quartz.Iron, magnesium, and calcium moved in, potassium, sodium, and silicon moved out.From the K-feldspar stage to the beresitization stage, the fluid changed from alkaline to acidic, and the migration form of Au also gradually changed from a chloride complex to a sulfur-hydrogen complex.With the continuous evolution of the ore-forming fluid, the ore-forming fluid and the surrounding rock continuously reacted, and the chemical properties of the ore-bearing hydrothermal fluid continued to change to promote the precipitation of gold.

  • 加载中
  • [1] 李洪奎, 耿科, 禚传源, 等.胶东金矿构造环境与成矿作用[M].北京:地质出版社, 2016.

    Google Scholar

    [2] 韦延光, 王建国, 邓军, 等.山东谢家沟金矿流体包裹体研究及其地质意义[J].现代地质, 2005, 19(2):224-230.

    Google Scholar

    [3] 邓军, 王建国, 韦延光, 等.山东谢家沟金矿床矿石与金矿物特征[J].地质科学(中国地质大学学报), 2007, 32(3):373-380.

    Google Scholar

    [4] 王建国, 刘洪臣, 邓军, 等.胶东谢家沟金矿稀土元素特征及其成矿意义[J].地质学报, 2009, 83(10):1497-1504.

    Google Scholar

    [5] 丁东胜, 陈蕾, 巩恩普, 等.山东谢家沟金矿床流体包裹体研究及成矿机制的探讨[J].矿床地质, 2017, 36(2):345-363.

    Google Scholar

    [6] Browne P R L.Hydrothermal alteration in active geothermal fields[J].Annual Review of Earth and Planetary Sciences, 1978, 6:229-248. doi: 10.1146/annurev.ea.06.050178.001305

    CrossRef Google Scholar

    [7] Pirajno F.Hydrothermal Processes and Mineral Systems[J].Dordrecht:Springer, 2009:73-104.

    Google Scholar

    [8] Chinnasamy S S, Mishra B.Greenstone metamorphism, hydrothermal alteration, and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri, Eastern Dharwar Craton, India[J].Economic Geology, 2013, 108(5):1015-1036. doi: 10.2113/econgeo.108.5.1015

    CrossRef Google Scholar

    [9] Qiu K F, Taylor R D, Song Y H, et al.Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper-molybdenum deposit, western Qinling Orogenic Belt, China[J].Gondwana Research, 2016, 35:40-58. doi: 10.1016/j.gr.2016.03.014

    CrossRef Google Scholar

    [10] Smith D J, Naden J, Jenkin G R T, et al.Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems[J].Ore Geology Reviews, 2017, 89:772-779. doi: 10.1016/j.oregeorev.2017.06.028

    CrossRef Google Scholar

    [11] 刘向东, 邓军, 张良, 等.胶西北寺庄金矿床热液蚀变作用[J].岩石学报, 2019, 35(5):1551-1565.

    Google Scholar

    [12] Gresens R L.Composition-volume relationships of metasomatism[J].Chemical Geology, 1967, 2:47-65. doi: 10.1016/0009-2541(67)90004-6

    CrossRef Google Scholar

    [13] Grant J A.The isocon diagrama simple solution to Gresens equation for metasomatic alteration[J].Economic Geology, 1986, 81(8):1976-1982. doi: 10.2113/gsecongeo.81.8.1976

    CrossRef Google Scholar

    [14] Grant J A.Isocon analysis:A brief review of the method and applications[J].Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(17/18):997-1004.

    Google Scholar

    [15] 陈海燕, 李胜荣, 张秀宝, 等.胶东金青顶金矿床围岩蚀变特征与金矿化[J].矿物岩石地球化学通报, 2012, 31(1):5-13.

    Google Scholar

    [16] 张炳林, 杨立强, 黄锁英, 等.胶东焦家金矿床热液蚀变作用[J].岩石学报, 2014, 30(9):2533-2545.

    Google Scholar

    [17] 张潮, 黄涛, 刘向东, 等.胶西北新城金矿床热液蚀变作用[J].岩石学报, 2016, 32(8):2433-2450.

    Google Scholar

    [18] 卫清, 范宏瑞, 蓝廷广, 等.胶东寺庄金矿热液蚀变作用与元素迁移规律[J].矿物岩石地球化学通报, 2018, 37(2):283-293.

    Google Scholar

    [19] 高建伟, 滕超, 赵国春, 等.山东金翅岭金矿蚀变特征与元素迁移规律[J].现代地质, 2019, 33(5):1036-1045.

    Google Scholar

    [20] 范宏瑞, 胡芳芳, 杨进辉, 等.胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J].岩石学报, 2005, 21(25):1317-1328.

    Google Scholar

    [21] 陆丽娜, 范宏瑞, 胡芳芳, 等.胶西北郭家岭花岗闪长岩侵位深度:来自角闪石温压计和流体包裹体的证据[J].岩石学报, 2010, 27(5):1521-1532.

    Google Scholar

    [22] Wang L G, Qiu Y M, McNaughton N J, et al.Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J].Ore Geology Reviews, 1998, 13:275-291. doi: 10.1016/S0169-1368(97)00022-X

    CrossRef Google Scholar

    [23] Hou M L, Jiang Y H, Jiang S Y, et al.Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China:Implications for crustal thickening to delamination[J].Geological Magazine, 2007, 144(4):619-631. doi: 10.1017/S0016756807003494

    CrossRef Google Scholar

    [24] Zhang J, Zhao Z F, Zheng Y F, et al.Post collisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China[J].Lithos, 2010, 119:512-536. doi: 10.1016/j.lithos.2010.08.005

    CrossRef Google Scholar

    [25] Jiang N, Chen J Z, Guo J H, et al.In situ zircon U-Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China Craton:Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion[J].Lithos, 2012, 142/143:84-94. doi: 10.1016/j.lithos.2012.02.018

    CrossRef Google Scholar

    [26] Ma L, Jiang S Y, Dai B Z, et al.Multiple sources for the origin of Late Jurassic Linglongadakitic granite in the Shandong peninsula, eastern China:Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence[J].Lithos, 2013, 162/163:251-263. doi: 10.1016/j.lithos.2013.01.009

    CrossRef Google Scholar

    [27] 陈俊, 孙丰月, 王力, 等.胶东招掖地区滦家河花岗岩锆石U-Pb年代学、岩石地球化学及其地质意义[J].世界地质, 2015, 34(2):283-295.

    Google Scholar

    [28] 杨进辉, 朱美妃, 刘伟, 等.胶东地区郭家岭花岗闪长岩的地球化学特征及成因[J].岩石学报, 2003, 19(4):692-700.

    Google Scholar

    [29] 张良, 刘跃, 李瑞红, 等.胶东大尹格庄金矿床铅同位素地球化学[J].岩石学报, 2014, 30(9):2468-2480.

    Google Scholar

    [30] Yang K F, Fan H R, Santosh M, et al.Reactivation of the Archean lower crust:Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J].Lithos, 2012, 146/147:112-127. doi: 10.1016/j.lithos.2012.04.035

    CrossRef Google Scholar

    [31] 陈广俊, 孙丰月, 李玉春, 等.胶东郭家岭花岗闪长岩U-Pb年代学、地球化学特征及地质意义[J].世界地质, 2014, 33(1):39-47.

    Google Scholar

    [32] Wang Z L, Yang L Q, Deng J, et al.Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China:Petrogenesis and tectonic setting[J].Journal of Asian Earth Sciences, 2014, 95:274-299. doi: 10.1016/j.jseaes.2014.03.001

    CrossRef Google Scholar

    [33] 刘跃, 邓军, 王中亮, 等.胶西北新城金矿床二长花岗岩岩石地球化学、锆石U-Pb年龄及Lu-Hf同位素组成[J].岩石学报, 2014, 30(9):2559-2573.

    Google Scholar

    [34] 杨宽, 王建平, 林进展, 等.胶东半岛艾山岩体岩石地球化学特征及成因意义[J].地质与勘探, 2012, 48(4):693-703.

    Google Scholar

    [35] Goss S C, Wilde S A, Wu F Y, et al.The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton[J].Lithos, 2010, 120:309-326. doi: 10.1016/j.lithos.2010.08.019

    CrossRef Google Scholar

    [36] 杨立强, 邓军, 王中亮, 等.胶东中生代金成矿系统[J].岩石学报, 2014, 30(9):2447-2467.

    Google Scholar

    [37] 辛洪波.胶东谢家沟金矿与焦家金矿地质特征与成因对比[D].中国地质大学(北京)博士学位论文, 2005: 40-45.

    Google Scholar

    [38] Cail T L, Cline J S.Alteration associated with gold deposition at the Getchell Carlin-type gold deposit, North-central Nevada[J].Economic Geology, 2001, 96(6):1343-1359. doi: 10.2113/gsecongeo.96.6.1343

    CrossRef Google Scholar

    [39] Mori Y, Nishiyama T, Yanagi T.Mass transfer and reaction paths in alteration zones around carbonate veins in the Nishisonogi metamorphic rocks, Southwest Japan[J].American Mineralogist, 2003, 88(4):611-623. doi: 10.2138/am-2003-0415

    CrossRef Google Scholar

    [40] Riverin G, Hodgson C J.Wall-rock alteration at the Millen-bach Cu-Zn mine, Noranda[J].Economic Geology, 1980, 75:424-444. doi: 10.2113/gsecongeo.75.3.424

    CrossRef Google Scholar

    [41] Sinha A K, Hewitt D A, Rimstidt J D.Fluid interaction and element mobility in the development of ultramylonites[J].Geology, 1986, 14:883-886. doi: 10.1130/0091-7613(1986)14<883:FIAEMI>2.0.CO;2

    CrossRef Google Scholar

    [42] MacLean W H, Kranidiotis P.Immobile elements as monitors of mass transfer in hydrothermal alteration:Phelps Dodge massive sulfide deposit, Matagami, Quebec[J].Economic Geology, 1987, 82:951-962. doi: 10.2113/gsecongeo.82.4.951

    CrossRef Google Scholar

    [43] Brauhart C W, Huston D L, Groves D I, et al.Geochemical mass-transfer patterns as indicators of the Architecture of a complete volcanic-hosted massive sulfide hydrothermal alteration system, Panorama district, Pilbara, Western Australia[J].Economic Geology, 2001, 96:1263-1278. doi: 10.2113/gsecongeo.96.5.1263

    CrossRef Google Scholar

    [44] Ague J J.Extreme channelization of fluid and the problem of element mobility during Barrovian metamorphism[J].American Mineralogist, 2011, 96:333-352. doi: 10.2138/am.2011.3582

    CrossRef Google Scholar

    [45] 艾金彪, 马生明, 朱立新, 等.安徽马头斑岩型钼铜矿床蚀变带常量元素迁移规律及其定量计算[J].矿床地质, 2013, 32(6):1262-1274.

    Google Scholar

    [46] Omella M E, Gong E P, Sun X D, et al.K-metasomatism of plagioclase to produce perthite in granitic rocks of Zhejiang Province, Southeast China[J].Geology and Resources, 2003, 12(3):129-138.

    Google Scholar

    [47] 王玉荣, 胡受奚.钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例[J].中国科学(D辑), 2000, 30(5):499-508.

    Google Scholar

    [48] Fourcade S, Allegre C J.Trace elements behavior in granite genesis:A case study.The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France)[J].Contributions to Mineralogy and Petrology, 1981, 76(2):177-195. doi: 10.1007/BF00371958

    CrossRef Google Scholar

    [49] Noyes H J, Frey F A, Wones D R.A tale of two plutons:Geochemical evidence bearing on the origin and differentiation of the red lake and eagle peak plutons, central Sierra Nevada, California[J].Journal of Geology, 1983, 91(5):487-509. doi: 10.1086/628801

    CrossRef Google Scholar

    [50] VanDongen M, Weinberg R F, Tomkins A G.REE-Y, Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation[J].Economic Geology, 2010, 105(4):763-776. doi: 10.2113/gsecongeo.105.4.763

    CrossRef Google Scholar

    [51] Parsapoor A, Khalili M, Mackizadeh M A.The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran)[J].Journal of Asian Earth Sciences, 2009, 34(2):123-134.

    Google Scholar

    [52] 胡受奚, 叶瑛, 方长泉.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社, 2004:1-264.

    Google Scholar

    [53] Pirajno F.Hydrothermal Mineral Deposits[M].Springer-Verlag Berlin Heidelberg, 1992.

    Google Scholar

    [54] Taylor R P, Fryer B J.Rare Earth Element Geochemistry as an aid to interpreting hydrothermal ore deposits[C]//Evans A M.Metallization Associated with Acid Magmatism.Wiley, New York, 1982: 357-365.

    Google Scholar

    [55] Taylor R P, Fryer B J.Multiple-stage hydrothermal alteration in porphyry copper systems in northern Turkey:the temporal interplay of potassic, propylitic, and phyllic fluids[J].Canadian Journal of Earth Sciences, 1980, (17):901-926.

    Google Scholar

    [56] Sverjensky D A.Europium redox equilibria in aqueous-solition[J].Earth and Planetary Science Letters, 1984, 67(1):70-78.

    Google Scholar

    [57] Liu Z K, Mao X C, Deng H, et al.Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan:Insights from geochemical effects of alteration, mineralization and trace elements in pyrite[J].Ore Geology Reviews, 2018, 102, 368-385. doi: 10.1016/j.oregeorev.2018.09.009

    CrossRef Google Scholar

    [58] 张德会.成矿作用地球化学[M].北京:地质出版社, 2015.

    Google Scholar

    [59] 叶天竺, 韦昌山, 王玉往, 等.勘查区找矿预测理论(各论)[M].北京:地质出版社, 2015.

    Google Scholar

    [60] 李晓春.胶东三山岛金矿围岩蚀变地球化学及成矿意义[D].中国科学院研究生院硕士学位论文, 2012.

    Google Scholar

    [61] Gao Z L, Kwak T A P.The geochemistry of wall rock alteration in turbidite-hosted gold vein deposits, central Victoria, Australia[J].Journal of Geochemical Exploration, 1997, 59(3):259-274. doi: 10.1016/S0375-6742(96)00079-9

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1222) PDF downloads(14) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint