2020 Vol. 39, No. 9
Article Contents

ZHANG Zhengping, XIN Houtian, CHENG Haifeng, ZHANG Yong, LIANG Guoqing, TI Zhenhai, ZHU Wei, SU Pengtao, DU Jinli, WANG Meng, ZHAO Qiyu. The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan-Baiheshan ophiolite belt[J]. Geological Bulletin of China, 2020, 39(9): 1389-1403.
Citation: ZHANG Zhengping, XIN Houtian, CHENG Haifeng, ZHANG Yong, LIANG Guoqing, TI Zhenhai, ZHU Wei, SU Pengtao, DU Jinli, WANG Meng, ZHAO Qiyu. The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan-Baiheshan ophiolite belt[J]. Geological Bulletin of China, 2020, 39(9): 1389-1403.

The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan-Baiheshan ophiolite belt

More Information
  • There is a set of ophiolite tectonic melange belt composed of basalt, plagiogranite, siliceous rock and sand slate which was discovered in the Elegen area of the Beishan orogenic belt in Inner Mongolia, based on the project of 1: 50000 Heihongshan Sheet regional geological survey.The ophiolitic melange belt is in NWW stripe-shaped distribution, with a width of about 2.5 to 8 km and an extension of about 25 km.The basalts in the Elegen ophiolite are rich in Na2O(3.02%~6.04%), MgO(4.29%~5.46%)and poor in K2O(0.03%~0.23%)and TiO2(0.44%~0.59%), and chondrite-normalized LREE patterns are flat.The primitive mantle normalized trace element patterns are characterized by the enrichment of the LILE(Ba, U)and depletion of the HFSE(Nd, Ta, P, Ti), which also have the characteristics of MORB and IAB, showing the lava characteristics of the SSZ-type tectonic background.The trace elements are enriched in the large ion lithophile elements Ba and U, while the high field strength elements Nb, Ta, P and Ti are obviously depleted, and have the characteristics of MORB and IAB, showing the lava characteristics of the SSZ-type tectonic background.The basalts in the the ophiolite and plagiogranite have similar rock geochemical characteristics, suggesting that they were formed in the partial melting of the basaltic magma, and the REE patterns show a flat-like curve with weak negative Eu anomalies.The LA-ICP-MS zircon U-Pb age of 342±4.7 Ma was obtained in the plagiogranite, and it is determined that the Elegen ophiolite was formed in the Early Carboniferous.Through the analysis of the tectonic setting of the ophiolite and the volcanic rocks in different ages around this area, the authors believe that the Elegen ophiolite might have been formed in the expansion stage of the post-arc basin in the Hongshishan-Baiheshan area during the southward reduction of the Paleo-Asian Ocean.In the Late Mesozoic, a series of NE-striking sinistral strike-slip faults caused the Hongshishan-Baiheshan tectonic belt to move northward to the area of Elegen.The discovery of the ophiolite explains the east extension of the Hongshishan-Baiheshan ophiolite belt, thus providing important information for the Paleozoic tectonic evolution of the Beishan area and even the whole Central Asian Orogenic Belt(CAOB).

  • 加载中
  • [1] 杨合群, 李英, 赵国斌, 等.北山蛇绿岩特征及构造属性[J].西部地质, 2010, 43(1):26-36.

    Google Scholar

    [2] 杨合群, 赵国斌, 李英等.新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J].地质通报, 2012, 31(2/3):413-421.

    Google Scholar

    [3] 武鹏, 王国强, 李向民, 等.甘肃北山地区牛圈子蛇绿岩的形成时代及地质意义[J].地质通报, 2012, 31(12):2032-2037.

    Google Scholar

    [4] 李向民, 余吉远, 王国强, 等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质通报, 2012, 31(12):2025-2031.

    Google Scholar

    [5] 余吉远, 李向民, 王国强, 等.甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报, 2012, 31(12):2038-2045.

    Google Scholar

    [6] 胡新茁, 赵国春, 胡新悦, 等.内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J].地质通报, 2015, 34(2/3):425-436.

    Google Scholar

    [7] 张正平, 段炳鑫, 孟庆涛, 等.内蒙古北山地区北山岩群斜长角闪岩LA-ICP-MS锆石U-Pb定年及其地质意义[J].地质与勘探, 2017, 53(6):1129-1139.

    Google Scholar

    [8] 赵茹石, 周振环, 毛金海, 等.甘肃省板块构造单元划分及其构造演化[J].中国区域地质, 1994, 1:28-36.

    Google Scholar

    [9] 何世平, 任秉琛, 姚文光, 等.甘肃内蒙古北山地区构造单元划分[J].西部地质, 2002, 35(4):30-40.

    Google Scholar

    [10] 龚全胜, 刘明强, 梁明宏, 等.北山造山带大地构造相及构造演化[J].西北地质, 2003, (1):11-17.

    Google Scholar

    [11] 魏志军, 黄增保, 金霞, 等.甘肃红石山地区蛇绿混杂岩地质特征[J].西北地质, 2004, 37(2):13-18.

    Google Scholar

    [12] 黄增保, 金霞.甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析[J].中国地质, 2006, (5):1030-1037.

    Google Scholar

    [13] 李春昱, 王荃.我国北部边陲及邻区的古板块构造与欧亚大陆的形成[C]//中国北方板块构造文集: 第1集.辽宁: 中国地质科学院沈阳地质矿产研究所出版, 1983: 1-16.

    Google Scholar

    [14] 刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J].地学研究, 1995, (28):37-48.

    Google Scholar

    [15] 聂凤军, 江思宏, 白大明.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002:1-408.

    Google Scholar

    [16] 左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1-15.

    Google Scholar

    [17] 潘桂棠, 陆松年, 肖庆辉, 等.中国大地构造阶段划分和演化[J].地学前缘, 2016, 23(6):1-23.

    Google Scholar

    [18] 卢进才, 牛亚卓, 魏仙样, 等.北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J].岩石学报, 2013, 29(8):2685-2694.

    Google Scholar

    [19] 王国强, 李向民, 徐学义, 等.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J].岩石学报, 2014, 30(6):1685-1694.

    Google Scholar

    [20] 彭湘萍, 陈高潮, 李玉宏, 等.北山地区红石山蛇绿混杂岩组成及地质意义[J].新疆地质, 2016, 34(2):184-191.

    Google Scholar

    [21] 王小红, 杨建国, 谢燮, 等.甘肃北山红石山基性-超基性岩体的成因类型及构造意义[J].西北地质, 2013, 46(1):40-55.

    Google Scholar

    [22] 彭海练, 高峰, 菅坤坤, 等.内蒙古红石山南辉长岩体锆石U-Pb年龄及地质意义[J].矿产勘查, 2018, 9(9):1705-1712.

    Google Scholar

    [23] 谢春林, 杨建国, 王立社, 等.甘肃北山地区古亚洲洋南缘古生代岛弧带位置的讨论[J].地质学报, 2009, 83(11):1584-1599.

    Google Scholar

    [24] Jackson S E, Pearson N J.The application of laser ablation-inductinvely coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017

    CrossRef Google Scholar

    [25] 李凤春, 侯明兰, 栾日坚, 等.电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用[J].岩矿测试, 2016, 35(01):17-23.

    Google Scholar

    [26] Schilling J G, Zajac M, Evans R, et al.Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N[J].American Journal of Science, 1983, 283(6):510-586. doi: 10.2475/ajs.283.6.510

    CrossRef Google Scholar

    [27] Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation og granitic rocks[J].Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [28] Yegodainski G M, Kay R W, Volynets O N, et al.Magnesian andesite in the westem Aleutian Komandorsky region Implications for slab melting and processes in the mantle wedge[J].Geol.Soc.Amer.Bull., 1995, 107:505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2

    CrossRef Google Scholar

    [29] Winchester J, Floyd P.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [30] Miyashiro A.Volcanic rock series in island arcs and active continental margins[J].American Journal of Science, 1974, 274(4):321-355. doi: 10.2475/ajs.274.4.321

    CrossRef Google Scholar

    [31] Batchelor R A, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology, 1985, 48(1/4):43-55.

    Google Scholar

    [32] O'Connor J.A classification for quartz-rich igneous rock based on feldspar ratios[J].US Geol.Surv Prof.Paper, 1965, 525:79-84.

    Google Scholar

    [33] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in the Ocean Basins.Geological Society, London, Special Publications, 1989, 42: 313-345.

    Google Scholar

    [34] Holm P E.The geochemical fingerprints of different tectonomagmatic environments using hydromagmatophile element abundances of tholeiitic basalts and basaltic andesites[J].Chemical Geology, 1985, 51(3/4):303-323.

    Google Scholar

    [35] Condie K C.Geochemical changes in baslts and andesites arcoss the Archean-Proterozoic boundary:Identification and significance[J].Lithos, 1989, 23(1):1-18.

    Google Scholar

    [36] Gill J B.Early geochemical evolution of an oceanic island arc and backarc:Fiji and the South Fiji Basin[J].The Jourmal of Geology, 1987, 95(5):589-615. doi: 10.1086/629158

    CrossRef Google Scholar

    [37] 张旗, 王焰, 李承东, 等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报, 2006, 22(9):2249-2269.

    Google Scholar

    [38] 李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀法多接收器等离子质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, 28(增刊):600-601.

    Google Scholar

    [39] 夏林圻, 夏祖春, 徐学义, 等.天山岩浆作用[M].北京:中国地质大学出版社, 2007:1-360.

    Google Scholar

    [40] Taylor S R, Mclennan S M.The Continental Crust, Its Composition and Evolution[M].Oxford:Blackwell, 1985:1-312.

    Google Scholar

    [41] Thompson R N.Magmatism in the British Tertiary volcanic province, Scott[J].J.Geol., 1982, 18:49-107.

    Google Scholar

    [42] Meschede M.A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J].Chemical Geology, 1986, 56(3/4):207-218.

    Google Scholar

    [43] Wood D A.Avariably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence[J].Geology, 1979, 7:499-503. doi: 10.1130/0091-7613(1979)7<499:AVVSUM>2.0.CO;2

    CrossRef Google Scholar

    [44] Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J].Earth Planet.Sci.Lett., 1982, 59:101-118. doi: 10.1016/0012-821X(82)90120-0

    CrossRef Google Scholar

    [45] Pearce J A.Trace element characteristics of lavas from destructive plate boundarie[C]//Thorpe R S.Andesites.Chishester: Wiley, 1982: 525-548.

    Google Scholar

    [46] 张旗, 周国庆.中国蛇绿岩[M].北京:地质出版社, 2001:13-14.

    Google Scholar

    [47] Brophy J G.La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas:Implications for the origin of oceanic plagiogranite[J].Contributions to Mineralogy and Petrology, 2009, 158(1):99-111. doi: 10.1007/s00410-008-0372-3

    CrossRef Google Scholar

    [48] Koepke J, Berndt J, Feig S T, et al.The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros[J].Contributions to Mineralogy and Petrology, 2007, 153(1):67-84. doi: 10.1007/s00410-006-0135-y

    CrossRef Google Scholar

    [49] Sylvester P J.Post-collisional strongly peraluminous granites[J].Lithos, 1998, 45(1/4):29-44.

    Google Scholar

    [50] Macdonald R, Hawkesworth C J, Heath E.The Lesser Antilles volcanic chain:A study in arc magmatism[J].Earth-Science Reviews, 2000, 49(1/4):1-76.

    Google Scholar

    [51] Elburg M A, van Bergen M, Hoogewerfe J, et al.Geochemical trends across an arc-continent collision zone:Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia[J].Geochimica et Cosmochimica Acta, 2002, 66(15):2771-2789. doi: 10.1016/S0016-7037(02)00868-2

    CrossRef Google Scholar

    [52] Dilek Y, Furnes H, Shallo M.Geochemistry of the Jurassic Mirdita ophiolite(Albania)and the MORB to SSZ evolution of a marginal basin oceanic crust[J].Lithos, 2008, 100(1/4):174-209.

    Google Scholar

    [53] 牛文超, 辛后田, 段连峰, 等.内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲基性——基于1:5万清河沟幅地质图的新认识[J].中国地质, 2019, 46(5):977-994.

    Google Scholar

    [54] Xia L Q, Xia Z C, Xu X Y, et al.Magmatism in Tianshan Mountains[M].Beijing:China Land Press, 2007:1-350.

    Google Scholar

    [55] 李向民, 夏林圻, 夏祖春, 等.东天山企鹅山群火山岩锆石U-Pb年代学[J].地质通报, 2004, 23(12):1215-1220.

    Google Scholar

    [56] 任云伟, 任邦方, 牛文超, 等.内蒙古哈珠地区石炭纪白山组火山岩:北山北部晚古生代活动陆缘岩浆作用的产物[J].地球科学2019, 44(1):312-327.

    Google Scholar

    [57] 赵志雄, 贾元琴, 许海, 等.北山交叉沟石英闪长岩锆石LA-ICP-MS U-Pb年龄及构造意义[J].地质学报, 2015, 89(7):1210-1218.

    Google Scholar

    [58] 董洪凯, 孟庆涛, 张正平, 等.内蒙古标山一带石英闪长岩地质特征及构造意义[J].新疆地质, 2018, 36(4):518-525.

    Google Scholar

    [59] 李敏, 辛后田, 任邦方, 等.内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J].地球科学, 2019, 44(1):328-343.

    Google Scholar

    [60] 徐旭明, 鲁扬, 辛后田, 等.内蒙古北山北缘古亚洲洋闭合时间制约:来自黑红山晚石炭世石英闪长岩的证据[J].矿物岩石, 2018, 38(4):66-75.

    Google Scholar

    [61] 程海峰, 梁国庆, 张正平, 等.内蒙古北山地区黑红山一带斑状花岗闪长岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2018, 37(10):1895-1904.

    Google Scholar

    [62] 王德强, 薛鹏远, 张正平, 等.内蒙古额济纳旗涌珠泉海西期侵入岩年代学特征及构造意义[J].地质通报, 2017, 36(9):1514-1523.

    Google Scholar

    [63] 左国朝, 何国琦.北山地区板块构造及成矿规律[M].北京:北京大学出版社, 1990:152-166.

    Google Scholar

    [64] 刘雪亚, 王荃.中国西部北山造山带大地构造及其演化[J].地学研究, 1995, 28:37-48.

    Google Scholar

    [65] 张文, 冯继承, 郑荣国, 等.甘肃北山音凹峡南花岗岩体的锆石LA-ICP-MS定年及其构造意义[J].岩石学报, 2011, 27(6):1649-1661.

    Google Scholar

    中国冶金地质总局五队.新疆东天山—甘蒙北山地区大地构造相图.2009.

    Google Scholar

    河北省区域地质调查院.内蒙古: 5万黑红山、额勒根乌兰乌拉、园包山幅区域地质矿产调查报告.2019.

    Google Scholar

    内蒙古地质勘察院.内蒙古1: 5万红梁子、沙多山、红旗山、蓬勃山幅区域地质矿产调查报告.2015.

    Google Scholar

    天津地质调查中心.内蒙古1: 5万清河沟、红柳峡幅区域地质矿产调查报告.2019.

    Google Scholar

    山西地质调查院.内蒙古1: 5万额勒斯图浑迪、哈布特盖嘎顺、骆驼口东、青山、大红山、双红山幅区域地质矿产调查.2017.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(1995) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint