2020 Vol. 39, No. 11
Article Contents

WANG Jian, ZHU Lixin, MA Shengming, WANG Bing, ZHANG Liangliang, TANG Shixin, DUAN Zhuang. Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province[J]. Geological Bulletin of China, 2020, 39(11): 1807-1826.
Citation: WANG Jian, ZHU Lixin, MA Shengming, WANG Bing, ZHANG Liangliang, TANG Shixin, DUAN Zhuang. Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province[J]. Geological Bulletin of China, 2020, 39(11): 1807-1826.

Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province

More Information
  • The Haiyu gold deposit, located in the north part of the Jiaodong gold province, was discovered in 2015 as a superlarge gold deposit with gold reserves 470 t @ 4.30 g/t. The gold orebodies were hosted in the Mesozoic Linglong-type granites and controlled by the Sanshandao-Cangshang Fault (SCF). Host Longlong-type granitic rocks for Au mineralization show a complex paragenetic sequence with hydrothermal alteration. Remobilization of the SCF system allowed for infiltration of hydrothermal fluids, leading to extensive K-feldspar alteration along the main fault. Subsequently, massive sericite formation occurred along both sides of the main fault. With the formation of fault gouge, the ore-bearing fluid could not migrate to the upper wall of the fault zone; therefore, the ore-forming fluid underwent intense sericite-quartz-pyrite alteration in footwall accompanied by gold precipitation. Finally, the formation of quartz-carbonate veins indicated the decrease of hydrothermal activity related to gold mineralization. The equilibrium calculation of potash and sericite rocks revealed that SiO2, MgO and CaO were brought in, TiO2 and K2O were basically unchanged, while Na2O appeared to be taken out. Most major elements were affected by strong mineral reactions. Au, Ag, Bi, As, Pb, Zn and other related ore-forming elements showed a positive correlation and were closely related to sericite-quartz-pyrite alteration. The mass balance calculation shows that different types of elements had complex geochemical behaviors in the process of water-rock reaction. The alteration combination and fluid inclusion study shows that the ore-forming fluid was characterized by medium and low temperature (126~351℃) and medium and low salinity (1.02~10.48%NaCleqv), belonging to the CO2-H2O-NaCl±CH4 system. In hydrothermal fluids, gold might have migrated mainly as Au(HS)2- complex. During the process of sericite-quartz-pyrite alteration, Au(HS)2- complex was destabilized and decomposed by sulfofication, leading to Au precipitation and mineralization. The reactivation of the North China Craton led to the upwelling of asthenosphere and the formation of a large number of igneous rocks, and also provided sufficient thermal energy and fluid input for large-scale gold mineralization in Jiaodong gold province.

  • 加载中
  • [1] Zhai M G, Santosh M.The early Precambrian odyssey of the North China Craton:a synoptic overview[J].Gondwana Research, 2011, 20:6-25.

    Google Scholar

    [2] Goldfarb R J, Santosh M.The dilemma of the Jiaodong gold deposits:Are they unique?[J].Geoscience Frontiers, 2014, 5(2):139-153.

    Google Scholar

    [3] 杨立强, 邓军, 王中亮, 等.胶东中生代金成矿系统[J].岩石学报, 2014, 30(9):2447-2467.

    Google Scholar

    [4] Yang L Q, Deng J, Goldfarb R J, et al.40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China[J].Gondwana Research, 2014, 25(4):1469-1483.

    Google Scholar

    [5] Yang L Q, Deng J, Guo R P, et al.World-class Xincheng gold deposit:An example from the giant Jiaodong gold province[J].Geoscience Frontiers, 2016, 7(3):419-430.

    Google Scholar

    [6] 宋明春, 张军进, 张丕建, 等.胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J].地质学报, 2015, 89(2):365-383.

    Google Scholar

    [7] Qiu, Y M, Groves D I, McNaughton N J, et al.Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China[J].Mineralium Deposita, 2002, 37:283-305.

    Google Scholar

    [8] Li X C, Fan H R, Santosh M, et al.Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China[J].Ore Geology Reviews, 2013, 53:403-421.

    Google Scholar

    [9] Li J W, Vasconcelos P M, Zhang J, et al.40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong Gold Province, eastern China[J].Journal of Geology, 2003, 111(6):741-751.

    Google Scholar

    [10] Li J W, Vasconcelos P M, Zhou M F, et al.Geochronology of the Pengjiakuang and Rushan gold deposits, Eastern Jiaodong Gold Province, Northeastern China:implications for regional mineralization and geodynamic setting[J].Economic Goelogy, 2006, 101:1023-1038.

    Google Scholar

    [11] Mao J W, Wang Y T, Li H M, et al.The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula:Evidence from D-O-C-S isotope systematics[J].Ore Geology Reviews, 2008, 33(3):361-381.

    Google Scholar

    [12] Song M C, Li S Z, Santosh M, et al.Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton[J].Ore Geology Reviews, 2015, 65:612-625.

    Google Scholar

    [13] Yang L Q, Deng J, Wang Z L, et al.Relationships Between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China:Implications for Gold Source and Deposition in a Brittle Epizonal Environment[J].Economic Geology, 2016, 111(1):105-126.

    Google Scholar

    [14] Fan H R, Zhai M G, Xie Y H, et al.Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China[J].Mineralium Deposita, 2003, 38(6):739-750.

    Google Scholar

    [15] 张潮, 黄涛, 刘向东, 等.胶西北新城金矿床热液蚀变作用[J].岩石学报, 2016, 32(8):2433-2450.

    Google Scholar

    [16] 张炳林, 单伟, 李大鹏, 等.胶东大尹格庄金矿床热液蚀变作用[J].岩石学报, 2017, 33(7):2256-2272.

    Google Scholar

    [17] 凌洪飞, 胡受奚, 孙景贵, 等.胶东金青顶和大尹格庄金矿床花岗质围岩的蚀变地球化学研究[J].矿床地质, 2002, 21(2):187-199.

    Google Scholar

    [18] 刘殿浩, 吕古贤, 张丕建, 等.胶东三山岛断裂构造蚀变岩三维控矿规律研究与海域超大型金矿的发现[J].地学前缘, 2015, 22(4):162-172.

    Google Scholar

    [19] 宋英昕.胶东三山岛北部海域金矿床蚀变矿物短波红外光谱特征及其对深部找矿的启示[J].黄金科学技术, 2017, 25(3):54-60.

    Google Scholar

    [20] 张军进, 丁正江, 刘殿浩, 等.山东莱州三山岛北部海域超大型金矿勘查实践与找矿成果[J].黄金科学技术, 2016, 24(1):1-10.

    Google Scholar

    [21] Zhao G C, Wilde S A, Cawood P A, et al.Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and p-T path constraints and tectonic evolution[J].Precambrian Research, 2001, 107:45-73.

    Google Scholar

    [22] 沈其韩, 钱祥麟.中国太古宙地质体组成、阶段划分和演化[J].地球学报, 1995, (2):113-120.

    Google Scholar

    [23] Zhou T H, Lü G X.Tectonics, granitoids and mesozoic gold deposits in East Shandong, China[J].Ore Geology Reviews, 2000, 16:71-90.

    Google Scholar

    [24] Zou Y, Zhai M G, Santosh M, et al.Highpressure pelitic granulites from the Jiao-Liao-Ji Belt, North China Craton:a complete p-t path and its tectonic implications[J].Journal of Asian Earth Science, 2017, 134:103-121.

    Google Scholar

    [25] Hou M L, Jiang Y H, Jiang S Y, et al.Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China:implications for crustal thickening to delamination[J].Geological Magazine, 2007, 144:619-631.

    Google Scholar

    [26] Wang L G, Qiu Y M, McNaughton N J, et al.Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J].Ore Geology Reviews, 1998, 13:275-291.

    Google Scholar

    [27] Yang K F, Fan H R, Santosh M, et al.Reactivation of the Archean lower crust:implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J].Lithos, 2012, 146:112-127.

    Google Scholar

    [28] Goss S C, Wilde S A, Wu F Y, et al.The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton[J].Lithos, 2010, 120:309-326.

    Google Scholar

    [29] Li X C, Fan H R, Santosh M, et al.An evolving magma chamber within extending lithosphere:an integrated geochemical, isotopic and zircon U-Pb geochronological study of the Gushan granite, eastern North China Craton[J].J.Asian Earth Science, 2012, 50:27-43.

    Google Scholar

    [30] Jiang P, Yang K F, Fan H R, et al.Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton[J].Lithos, 2016, 258:197-214.

    Google Scholar

    [31] Zhang X, Cawood P A, Wilde S A, et al.Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China[J].Mineralium Deposita, 2003, 38(2):141-153.

    Google Scholar

    [32] Zhang L, Yang L Q, Wang Y, et al.Thermochronologic constrains on the processes of formation and exhumation of the Xinli orogenic gold deposit, Jiaodong Peninsula, eastern China[J].Ore Geology Reviews, 2017, 81:140-153.

    Google Scholar

    [33] Hu F F, Fan H R, Jiang X H, et al.Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China[J].Geofluids, 2014, 13(4):528-541.

    Google Scholar

    [34] 郭敬辉, 陈福坤, 张晓曼, 等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J].岩石学报, 2005, 21(4):255-275.

    Google Scholar

    [35] Zen E A, Hammarstrom J M.Magmatic epidote and its petrologic significance[J].Geology, 1984, 12:515-518.

    Google Scholar

    [36] 陈光远, 孙岱生, 邵岳.胶东昆嵛山二长花岗岩副矿物成因矿物学研究[J].现代地质, 1996, 10(2):175-186.

    Google Scholar

    [37] 陈光远, 孙岱生, 邵伟.胶东郭家岭花岗闪长岩成因矿物学与金矿化[M].武汉:中国地质大学出版社, 1993:1-230.

    Google Scholar

    [38] 林文蔚, 殷秀兰.水-岩反应中成矿流体的浓缩作用及其应用[J].矿物岩石地球化学通报, 1999, 18(1):10-13.

    Google Scholar

    [39] 鄢明才, 迟清华.中国东部地壳与岩石的化学组成[M].北京:科学出版社, 1997:39-40.

    Google Scholar

    [40] Bodnar R J.Revised equation and table for determining the freezing point depression of H2O NaCl solutions[J].Geochimica et Cosmochimica Acta, 1993, 57(3):683-684.

    Google Scholar

    [41] Collins P L F.Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity[J].Economic Geology, 1979, 74(6):1435-1444.

    Google Scholar

    [42] 李伟, 谢桂青, 张志远, 等.流体包裹体和C-H-O同位素对湘中古台山金矿床成因制约[J].岩石学报, 2016, 32(11):3489-3506.

    Google Scholar

    [43] 卫清, 范宏瑞, 蓝廷广, 等.胶东寺庄金矿床成因:流体包裹体与石英溶解度证据[J].岩石学报, 2015, 31(4):1049-1062.

    Google Scholar

    [44] Gresens R L.Composition-volume relationships of metasomatism[J].Chemical Geology, 1967, 2:47-65.

    Google Scholar

    [45] Grant J A.The isocon diagram-a simple solution to Gresens' equation for metasomatic alteration[J].Economic Geology, 1976, 81(8):1976-1982.

    Google Scholar

    [46] Grant J A.The isocon diagram-a simple solution to Gresens equation for metasomatic alteration[J].Economic Geology, 1986, 81:1976-1982.

    Google Scholar

    [47] Liu Y P, Ma S M, Zhu L X, et al.The multi-attribute anomaly structure model:An exploration tool for the Zhaojikou epithermal Pb-Zn deposit, China[J].Journal of Geochemical Exploration, 2016, 169:50-59.

    Google Scholar

    [48] Grant J A.Isocon analysis:A brief review of the method and applications[J].Physics and Chemistry of the Earth, 2005, Parts A/B/C 30(17/18):997-1004.

    Google Scholar

    [49] Rubin J N, Henry C D, Price J G.The mobility of zirconium and other-immobile elements during hydrothermal alteration[J].Chemical Geology, 1993, 110(1/3):29-47.

    Google Scholar

    [50] Ague J J.Evidence for major mass transfer and volume strain during regional metamorphism of pelites[J].Geology, 1991, 19(8):855-858.

    Google Scholar

    [51] Ague J J.Extreme channelization of fluid and the problem of element mobility during Barrovian metamorphism[J].American Mineralogist, 2011, 96(2/3), 333-352.

    Google Scholar

    [52] 艾金彪, 马生明, 朱立新, 等.长江中下游马头斑岩型铜钼矿床常量元素、稀土元素特征及迁移规律[J].地质学报, 2013, 87(5):691-702.

    Google Scholar

    [53] 卢焕章.CO2流体与金矿化:流体包裹体的证据[J].地球化学, 2008, 37(4):321-328.

    Google Scholar

    [54] Phillips G N, Evans K A.Role of CO2 in the formation of gold deposits[J].Nature, 2004, 429(6994):860-863.

    Google Scholar

    [55] Diamond L W.Review of the systemtics of CO2-H2O fluid inclusions[J].Lithos, 2001, 55(1/4):69-99.

    Google Scholar

    [56] 刘玄, 范宏瑞, 胡芳芳, 等.胶东大庄子金矿成矿流体及稳定同位素研究[J].矿床地质, 2011, 30(4):675-689.

    Google Scholar

    [57] Tobin H, Vannucchil P, Meschede M.Structure, inferred mechanical properties and implicaitons for fluid transport in the décollement zone, Costa Rica Convergent Margin[J].Geology, 2001, 29(10):907-910.

    Google Scholar

    [58] 邓军, 陈玉民, 刘钦, 等.胶东三山岛断裂带金成矿系统与资源勘查[M].北京:地质出版社, 2010:1-371.

    Google Scholar

    [59] 王中亮.焦家金矿田成矿系统[D].中国地质大学(北京)博士学位论文, 2012: 1-226.

    Google Scholar

    [60] 刘跃.胶东早白垩世早期新城花岗岩成因及其成矿贡献[D].中国地质大学(北京)硕士学位论文, 2015: 1-91.

    Google Scholar

    [61] 王玉荣, 胡受奚.钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例[J].中国科学, 2000, 30(5).

    Google Scholar

    [62] Omella M E, Gong E P, Sun X D, et al.K-metasomatism of plagioclase to produce perthite in granitic rocks of Zhejiang province, Southeast China[J].Geology and resources, 2003, 12(3):129-138.

    Google Scholar

    [63] 李瑞红, 刘育, 李海林, 等.胶东新城金矿床控矿构造变形环境:显微构造和EBSD组构约束[J].岩石学报, 2014, 30(9):2546-2558.

    Google Scholar

    [64] 胡受奚, 叶瑛, 方长泉.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社, 2004:1-264.

    Google Scholar

    [65] Parsapoor A, Khalili M, Mackizadeh M A.The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran)[J].Journal of Asian Earth Sciences, 2009, 34(2):123-134.

    Google Scholar

    [66] Wang Z L, Yang L Q, Guo L N, et al.Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China:A fluid inclusion study[J].Ore Geology Reviews, 2015, 65:701-717.

    Google Scholar

    [67] Yang L Q, Deng J, Guo L N, et al.Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J].Ore Geology Reviews, 2016, 72:585-602.

    Google Scholar

    [68] 刘育, 杨立强, 郭林楠, 等.胶东大尹格庄金矿床成矿流体组成[J].岩石学报, 2014, 30(9):2507-2517.

    Google Scholar

    [69] 毛景文, 李厚民, 王义天, 等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J].地质学报, 2005, 79(6):839-857.

    Google Scholar

    [70] 姜晓辉, 范宏瑞, 胡芳芳, 等.胶东三山岛金矿中深部成矿流体对比及矿床成因[J].岩石学报, 2011, 27(5):1327-1340.

    Google Scholar

    [71] 李楠.阳山金矿带成矿作用地球化学[D].中国地质大学(北京)博士学位论文, 2013: 1-147.

    Google Scholar

    [72] Gao Z L, Kwak T A P.The geochemistry of wall rock alteration in turbidite-hosted gold vein deposits, central Victoria, Australia[J].Journal of Geochemical Exploration, 1997, 59(3):259-274.

    Google Scholar

    [73] Li N, Deng J, Yang L Q, et al.Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan gold belt, West Qinling, China[J].Mineralium Deposita, 2014, 49(4):427-449.

    Google Scholar

    [74] 祁冬梅, 周汉文, 宫勇军, 等.岩石热液蚀变作用过程元素的活动性——河南祁雨沟金矿Ⅳ号岩体蚀变花岗斑岩的研究[J].岩石学报, 2015, 31(9):2655-2673.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(789) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint