2020 Vol. 39, No. 10
Article Contents

ZHANG Qi, ZHANG Wei, JIANG Lili, SHI Yuruo, JIAO Shoutao, WANG Cunzhi, WANG Zhen. Orogenic peridotite and its significance[J]. Geological Bulletin of China, 2020, 39(10): 1489-1506.
Citation: ZHANG Qi, ZHANG Wei, JIANG Lili, SHI Yuruo, JIAO Shoutao, WANG Cunzhi, WANG Zhen. Orogenic peridotite and its significance[J]. Geological Bulletin of China, 2020, 39(10): 1489-1506.

Orogenic peridotite and its significance

  • Orogenic peridotite and peridotite of ophiolite are mainly composed of mantlerock.Orogenic peridotite represents the mantle beneath the continental crust, and peridotite of ophiolite represents the mantle beneath the oceanic crust.The mantle beneath the oceanic crust is generally close to the mantle beneath the continental crust in terms of material composition, but the tectonic setting is different.This paper briefly introduces the composition of orogenic peridotites, high-pressure and ultrahigh-pressure metamorphism related to orogenic peridotites, mantle fluids, mineralization, and mechanisms of orogenic peridotite emplacement, and also briefly introduces several possible orogenic peridotites in China such as the Songshugou peridotite in the Qinling Mountain, the Raobazhai rock mass in Anhui, several rock masses in the Yidun-type area in western Sichuan, Santai rock mass in western Yunnan, and Dadaoerji rock mass in Gansu.The evolution process of orogenic peridotite and its difference from ophiolite peridotite are discussed.It is pointed out that the difference between ophiolite and orogenic peridotite is not mainly in material composition and geochemistry, but in tectonic setting.Is there no abyssal sediment? Is it mixed up? Yes, it is peridotite of ophiolite; no, it is orogenic peridotite.Is there any UHP metamorphic effect? Is there mantle metasomatism or strong mantle metasomatism? Some are very strong and may be orogenic peridotites; no, they may be peridotites of ophiolite.Cold emplacement is peridotite of ophiolite, and thermal emplacement is orogenic peridotite.It is pointed out in this paper that the formation of orogenic peridotite has generally experienced two stages of tectonic evolution:the initial thinning of the continental crust, the rifting stage, and the late extruding orogenic belt.In some areas, only the rift stage is developed, and the tectonic evolution finished after the rift, also known as orogenic peridotites, such as Zabargad in the Red Sea, Ronda in Spain, Beni Bousera in Morocco, and Yidun peridotite in China.The peridotite of ophiolite appears in the orogenic belt, representing the ocean basin that has disappeared; the orogenic peridotite generally appears in the orogenic belt, but it represents the thinned and torn continental crust.It is necessary to study and demonstrate whether the peridotite that appears in the orogenic belt is ophiolite because their tectonic meanings are different.

  • 加载中
  • [1] 张旗, 张魁武, 李达周.横断山区基性-超基性岩的类型[J].岩石学报, 1987, (3):46-53.

    Google Scholar

    [2] 张旗, 李达周, 张魁武, 等.义敦型镁铁-超镁铁岩的主要特征及其与蛇绿岩的对比[J].岩石学报, 1990, 6(3):33-42.

    Google Scholar

    [3] 张旗, 张魁武, 李达周.横断山区镁铁-超镁铁岩[M].北京:科学出版社, 1992.

    Google Scholar

    [4] 张旗, 周德进, 赵大升, 等.滇西古特提斯造山带的威尔逊旋回:岩浆活动记录和深部过程讨论[J].岩石学报, 1996, 12(1):17-28

    Google Scholar

    [5] 张旗.镁铁-超镁铁岩的分类及其构造意义[J].地质科学, 2014, 49(3):982-1017

    Google Scholar

    [6] 张旗, 周国庆.中国蛇绿岩[M].北京:科学出版社, 2001:1-182.

    Google Scholar

    [7] Nicolas A, Jackson E D.Repartition en deux province des peridotites des chaines alpines longeant la Mediterranee:implications geotectoniques[J].Schweiz.Petrogr.Mitt., 1972, 52:479-495.

    Google Scholar

    [8] Menzies M A.Chemical and isotopic heterogeneities in orogenic and ophiolitic peridotites[C]//Ophiolites and Oceanic Lithosphere.Blackwell Sci., Pnbl., Oxford, London, 1984: 231-240.

    Google Scholar

    [9] Lorand J P, Schmidt G, Palme H, et al.Highly siderophile element geochemistry of the Earth's mantle:new data for the Lanzo(Italy) and Ronda(Spain) orogenic peridotite bodies[J].Lithos, 2000, 53:149-164. doi: 10.1016/S0024-4937(00)00017-7

    CrossRef Google Scholar

    [10] Doblas M, Oyarzun M."Mantle core complexes" and Neogene extensional detachment tectonics in the western Betic Cordilleras, Spain:an alternative model for the emplacement of the Ronda peridotite[J].EPSL, 1989, 93:76-84. doi: 10.1016/0012-821X(89)90185-4

    CrossRef Google Scholar

    [11] Den Tex E.Origin of ultramafic rocks, their tectonic settings and history:A contribution to the discussion of the paper "The origin of ultramafic and ultrabasic rocks" by P J Wyllie[J].Tectonophy, 1969, 7:457-488. doi: 10.1016/0040-1951(69)90016-X

    CrossRef Google Scholar

    [12] Ernst W G.Petrochemical Study of Lherzolitic Rocks from the Western Alps[J].Journal of Petology, 1978, 19:341-392. doi: 10.1093/petrology/19.3.341

    CrossRef Google Scholar

    [13] Nicolas A.Lherzolites of the western Alps: a stracturalreview[C]//Kimberlites, II: The Mantle and Crust-mantle relationship, Elsevier, Amstedam, 1984: 333-346.

    Google Scholar

    [14] Trommsdorff V, Hermann J, Muntener O, et al.Geodynamic cycles of subcontinental lithosphere in the Central Alps and the Arami enigma[J].Journal of Geodynamics, 2000, 30:77-92. doi: 10.1016/S0264-3707(99)00028-9

    CrossRef Google Scholar

    [15] Bonatti E, Michael P J.Mantle peridotites from continental rifts to ocean basins to subduction zones[J].Earth and Planetary Science Letters, 1989, 91:297-311. doi: 10.1016/0012-821X(89)90005-8

    CrossRef Google Scholar

    [16] Gueddari K, Piboule M, Amosse J.Differentiation of platinum-group elements(PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range(Ronda and Beni Bousera)[J].Chemical Geology, 1996, 134:181-197. doi: 10.1016/S0009-2541(96)00085-X

    CrossRef Google Scholar

    [17] Snow J E, Schmidt G.Proterozoic melting in the northern peridotite massif, Zabargad island:Os isotopic evidence[J].Terra Nova, 1999, 11:45-50. doi: 10.1046/j.1365-3121.1999.00223.x

    CrossRef Google Scholar

    [18] Boudier F, Nicolas A, Ji S, et al.The gneiss of Zabargad Island—deep crust of a rift[J].Tectonophysics, 1988, 150: 209-227. doi: 10.1016/0040-1951(88)90302-2

    CrossRef Google Scholar

    [19] Lorand J P, Bodinier J L, Dupuy C, et al.Abundances and distribution of gold in the orogenic-type spinel peridotites from Arie'ge(Northeastern Pyrenees, France)[J].Geochimica et Cosmochimica Acta, 1989, 53:3085-3090. doi: 10.1016/0016-7037(89)90188-9

    CrossRef Google Scholar

    [20] Muntener O, Piccardo G B, Polino R, et al.Revisiting the Lanzo peridotite(NW-Italy):'Asthenospherization' of ancient mantle lithosphere[J].Ofioliti, 2005, 30:111-124.

    Google Scholar

    [21] Bodinier J L, Godard M.Orogenic, ophiolitic, and abyssal peridotites[C]//Holland H D, Turekian K K.Treatise on Geochemistry.2nd ed.Amsterdam: Elsevier, 2014, 103-167.

    Google Scholar

    [22] Crespo E, Luque F J, Rodas M, et al.Graphite-sulfide deposits in Ronda and Beni Bousera peridotites(Spain and Morocco) and the origin of carbon in mantle-derived rocks[J].Gondwana Research, 2006, 9:279-290. doi: 10.1016/j.gr.2005.10.003

    CrossRef Google Scholar

    [23] Gonzalez-Jimenez J M, Marchesi C, Griffin W L, et al.Zircon recycling and crystallization during formation of chromite-and Ni-arsenide ores in the subcontinental lithospheric mantle(Serranía de Ronda, Spain)[J].Ore Geology Reviews, 2017, 90:193-209. doi: 10.1016/j.oregeorev.2017.02.012

    CrossRef Google Scholar

    [24] Tubía J.The Ronda peridotites(Los Reales nappe):An example of the relationship between lithospheric thickening by oblique tectonics and late extensional deformation within the Betic Cordillera(Spain)[J].Tectonophysics, 1994, 238:381-398. doi: 10.1016/0040-1951(94)90065-5

    CrossRef Google Scholar

    [25] Ishiwatari A.Alpine ophiolites:product of low-degree mantle melting in a Mesozoic transcurrent rift zone[J].EPSL, 1985, 76:93-108. doi: 10.1016/0012-821X(85)90151-7

    CrossRef Google Scholar

    [26] Bodinier J L, Menzies M A, Thirlwall M.Continental to oceanic mantle transition—REE and Sr-Nd isotopic geochemistry of the Lanzo lherzolite massif.Orogenic lherzolites and mantle processes[J].Journal of Petrology, 1991, 20:191-210.

    Google Scholar

    [27] 苏犁, 宋述光, 周鼎武.秦岭造山带松树沟纯橄岩体成因:地球化学和岩浆包裹体的制约[J].中国科学:地球科学, 2005, 35(1):38-47.

    Google Scholar

    [28] Dong Y P, Zhou M F, Zhang G W, et al.The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China:Implications for the tectonic evolution of the Qinling orogenic belt[J].Journal of Asian Earth Sciences, 2008, 32:325-335. doi: 10.1016/j.jseaes.2007.11.010

    CrossRef Google Scholar

    [29] Nie H, Yang J Z, Zhou G Y, et al.Geochemical and Re-Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China[J].Lithos, 2019, 344/345:207-216. doi: 10.1016/j.lithos.2019.06.029

    CrossRef Google Scholar

    [30] Cao Y, Song S G, Su L, et al.Highly refractory peridotites in Songshugou, Qinling orogen:Insights into partial melting and melt/fluid-rock reactions in forearc mantle[J].Lithos, 2016, 252/253:234-254. doi: 10.1016/j.lithos.2016.03.002

    CrossRef Google Scholar

    [31] Sun S S, Dong Y P, Sun Y L, et al.Re-Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massif in the Qinling Orogenic Belt, China[J].Gondwana Research, 2019, 70:71-87. doi: 10.1016/j.gr.2018.12.016

    CrossRef Google Scholar

    [32] Tang L, Santosha A, Dong Y P, et al.Early Paleozoic tectonic evolution of the North Qinling orogenic belt:Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite[J].Gondwana Research, 2016, 30:48-64. doi: 10.1016/j.gr.2014.10.006

    CrossRef Google Scholar

    [33] 李晔, 周汉文, 钟增球, 等.北秦岭早古生代两期变质作用:来自松树沟基性岩岩石学及锆石U-Pb年代学的记录[J].地球科学, 2012, 37(增刊):111-124.

    Google Scholar

    [34] 刘良, 廖小莹, 张成立, 等.北秦岭高压-超高压岩石的多期变质时代及其地质意义[J].岩石学报, 2013, 29(5):1634-1656.

    Google Scholar

    [35] Yu H, Zhang H F, Santosh M.Mylonitized peridotites of Songshugou in the Qinling orogen, central China:A fragment of fossil oceanic lithosphere mantle[J].Gondwana Research, 2017, 52:1-17. doi: 10.1016/j.gr.2017.08.007

    CrossRef Google Scholar

    [36] 张宏福, 于红.造山带橄榄岩岩石学与构造过程:以松树沟橄榄岩为例[J].地球科学, 2019, 44(4):1057-1066.

    Google Scholar

    [37] 钱加慧, 杨秀清, 刘良, 等.北秦岭松树沟榴闪岩锆石U-Pb定年、矿物包裹体和Lu-Hf同位素特征及其地质意义[J].岩石学报, 2013, 29(9):3087-3098.

    Google Scholar

    [38] 陈丹玲, 任云飞, 宫相宽, 等.北秦岭松树沟榴辉岩的确定及其地质意义[J].岩石学报, 2015, 31(7):1841-1854.

    Google Scholar

    [39] 郑永飞, 赵子福, 陈伊翔.大陆俯冲隧道过程:大陆碰撞过程中的板块界面相互作用[J].科学通报, 2013, 58:2233-2239.

    Google Scholar

    [40] 郑永飞, 陈伊翔, 戴立群, 等.发展板块构造理论:从洋壳俯冲带到碰撞造山带[J].中国科学:地球科学, 2015, 45:711-735.

    Google Scholar

    [41] 郑建平, 熊庆, 赵伊, 等.俯冲带橄榄岩及其记录的壳幔相互作用[J].中国科学:地球科学, 2019, 49:1037-1058.

    Google Scholar

    [42] 陈意, 苏斌, 郭顺.大别-苏鲁造山带橄榄岩:进展和问题[J].中国科学:地球科学, 2015, 45(9):1245-1269.

    Google Scholar

    [43] 陈意, 苏斌, 郭顺.造山带橄榄岩起源和大陆俯冲带壳幔相互作用[J].地球科学, 2019, 44(12):4086-4094.

    Google Scholar

    [44] 陈仁旭, 尹壮壮, 夏春鹏.大别-苏鲁造山带橄榄岩记录的碰撞造山过程中地幔楔的地壳交代作用[J].矿物岩石地球化学通报, 2019, 38(3):459-484.

    Google Scholar

    [45] 陈仁旭, 郑永飞.造山带橄榄岩记录的大陆俯冲带多期壳幔相互作用[J].地球科学, 2019, 44(12):4095-4101.

    Google Scholar

    [46] Zheng Y F.Metamorphic chemical geodynamics in continental subduction zones[J].Chemical Geology, 2012, 328:5-48. doi: 10.1016/j.chemgeo.2012.02.005

    CrossRef Google Scholar

    [47] Zheng Y F.Subduction zone geochemistry[J].Geoscience Frontiers, 2019, 10:1223-1254. doi: 10.1016/j.gsf.2019.02.003

    CrossRef Google Scholar

    [48] Beccaluva L, Piccardo G B, Serri G.Petrology of northern Apennian ophiolites and comparison with other Tethyan ophiolites[C]//Ophiolites.Proc, Inter, Ophi, Symp, Cyprus, 1980: 314-331.

    Google Scholar

    [49] Lemoine M, Tricart P, Boillot G.Ultramafic and gabbroic ocean floor of the Ligurian Tethys(Alps, Corsica, Apennines):in search of a genetic model[J].Geology, 1987, 15:622-625. doi: 10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2

    CrossRef Google Scholar

    [50] Li X H, Faure M, Lin W, et al.New isotopic constraints on age and magma genesis of an embryonic oceanic crust:the Chenaillet Ophiolite in the Western Alps[J].Lithos, 2013, 160/161:283-291. doi: 10.1016/j.lithos.2012.12.016

    CrossRef Google Scholar

    [51] Li X H, Faure M, Rossi P, et al.Age of Alpine Corsica ophiolites revisited:Insights from in situ zircon U-Pb age and O-Hf isotopes[J].Lithos, 2015, 220/223:179-190. doi: 10.1016/j.lithos.2015.02.006

    CrossRef Google Scholar

    [52] O'Hara M J.Mineral parageneses in ultramafic rocks[C]//Wyllie P J.Ultramafic and Related Rocks, New York: Wiley, 1967: 393-403.

    Google Scholar

    [53] Frey F A, Suen C J, Stockman H W.The Ronda high temperature peridotite:Geochemistry and petrogenesis[J].Geochimica et Cosmochimica Acta, 1985, 49:2469-2491. doi: 10.1016/0016-7037(85)90247-9

    CrossRef Google Scholar

    [54] Bartoli O, Acosta-Vigil A, Tajcmanová L, et al.Using nanogranitoids and phase equilibria modeling to unravel anatexis in the crustal footwall of the Ronda peridotites(Betic Cordillera, S Spain)[J].Lithos, 2016, 256/257:282-299. doi: 10.1016/j.lithos.2016.03.016

    CrossRef Google Scholar

    [55] Acosta-Vigil A, Rubatto D, Bartoli O, et al.Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain[J].Lithos, 2014, 210/211:147-167. doi: 10.1016/j.lithos.2014.08.018

    CrossRef Google Scholar

    [56] Su B, Chen Y, Guo S, et al.Origins of orogenic dunites:petrology, geochemistry and implications[J].Gondwana Research, 2016, 29:41-59. doi: 10.1016/j.gr.2015.08.001

    CrossRef Google Scholar

    [57] Su B, Chen Y, Mao Q, et al.Minor elements in olivine inspect the petrogenesis of orogenic peridotites[J].Lithos, 2019, 344/345:207-216. doi: 10.1016/j.lithos.2019.06.029

    CrossRef Google Scholar

    [58] Weyer S, Munker C, Mezger K.Nb/Ta, Zr/Hf and REE in the depleted mantle:implications for the differentiation history of the crust-mantle system[J].EPSL, 2003, 205:309-324. doi: 10.1016/S0012-821X(02)01059-2

    CrossRef Google Scholar

    [59] Mazzucchelli M, Zanetti A, Rivalenti G, et al.Age and geochemistry of mantle peridotites and diorite dykes from the Baldissero body:Insights into the Paleozoic-Mesozoic evolution of the Southern Alps[J].Lithos, 2010, 119:485-500. doi: 10.1016/j.lithos.2010.08.002

    CrossRef Google Scholar

    [60] Gervilla F, Leblanc M.Magmatic ores in high-temperature alpine-type lherzolite massifs(Ronda, Spain, and Beni Bousera, Morocco)[J].Econ.Geol., 1990, 85:112-132. doi: 10.2113/gsecongeo.85.1.112

    CrossRef Google Scholar

    [61] Beslier M O, Girardeau J, Boillot G.Kinematics of peridotite emplacement during North Atlantic continental rifting, Galicia, northwestern Spain[J]Tectonophysics, 1990, 184:321-343. doi: 10.1016/0040-1951(90)90446-F

    CrossRef Google Scholar

    [62] Imai A, Ozawa K.Tectonic implications of the hydrated garnet peridotites near Mt Kinabalu, Sabah, East Malaysia[J].Journal of Southeast Asian Earth Sciences, 1991, 6:431-445. doi: 10.1016/0743-9547(91)90086-D

    CrossRef Google Scholar

    [63] Morishita T, Arai S, Ishida Y.Occurrence and chemical composition of amphiboles and related minerals in corundum-bearing mafic rock from the Horoman Peridotite Complex, Japan[J].Lithos, 2007, 95:425-440. doi: 10.1016/j.lithos.2006.09.006

    CrossRef Google Scholar

    [64] Leblanc M, Temagoult A.Chromite pods in a lherzolite massif(Collo, Algeria):Evidence of oceanic-type mantle rocks along the West Mediterranean Alpine Belt[J].Lithos, 1989, 23:153-162. doi: 10.1016/0024-4937(89)90002-9

    CrossRef Google Scholar

    [65] Tubia J M, Cuevas J, Ibarguchi J I G.Sequential development of the metamorphic aureole beneath the Ronda peridotites and its beating on the tectonic evolution of the Betic Cordillera[J].Tectonophysics, 1997, 279:227-252. doi: 10.1016/S0040-1951(97)00124-8

    CrossRef Google Scholar

    [66] Zhang R Y, Liou J G, Yang J S, et al.Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China[J].Journal of Metamorphic Geology, 2000, 18:149-166. doi: 10.1046/j.1525-1314.2000.00248.x

    CrossRef Google Scholar

    [67] Marchesi C, Garrido C, Bosch D, et al.Mantle refertilization by melts of crustal-derived garnet pyroxenite:Evidence from the Ronda peridotite massif, southern Spain[J].EPSL, 2013, 362:66-75. doi: 10.1016/j.epsl.2012.11.047

    CrossRef Google Scholar

    [68] Hidas K, Booth-Rea G, Garrido CJ, et al.Backarc basin inversion and subcontinental mantle emplacement in the crust:kilometre-scale folding and shearing at the base of the proto-Alborán lithospheric mantle(Betic Cordillera, southern Spain)[J].J.Geol.Soc., 2013, 170:47-55. doi: 10.1144/jgs2011-151

    CrossRef Google Scholar

    [69] Tubía J M, Cuevas J, Esteban J J.Localization of deformation and kinematic shift during the hot emplacement of the Ronda peridotites(Betic Cordilleras, southern Spain)[J].Journal of Structural Geology, 2013, 50:148-160. doi: 10.1016/j.jsg.2012.06.010

    CrossRef Google Scholar

    [70] Morishita T, Arai S, Gervilla F.High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain:significance of sapphirine-and corundum-bearing mineral assemblages[J].Lithos, 2001, 57:143-161. doi: 10.1016/S0024-4937(01)00036-6

    CrossRef Google Scholar

    [71] Bailey E, Holloway J R.Experimental determination of elastic properties of talc to 800℃, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones[J].EPSL, 2000, 183:487-498. doi: 10.1016/S0012-821X(00)00288-0

    CrossRef Google Scholar

    [72] Liu C Z, Wu F Y, Wilde S A, et al.Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite(southwestern Tibetan Plateau) formed by hydrous melt metasomatism[J].Lithos, 2010, 114:413-422. doi: 10.1016/j.lithos.2009.10.008

    CrossRef Google Scholar

    [73] Wang J X, Zhou H Y, Salters V, et al.Mantle melting variation and refertilization beneath the Dragon Bone amagmatic segment(53°E SWIR):Major and trace element compositions of peridotites at ridge flanks[J].Lithos, 2019, 324/325:325-339. doi: 10.1016/j.lithos.2018.11.014

    CrossRef Google Scholar

    [74] Nozaka T.Metasomatic hydration of the Oeyama forearc peridotites:Tectonic implications[J].Lithos, 2014, 184/187:346-360. doi: 10.1016/j.lithos.2013.11.012

    CrossRef Google Scholar

    [75] Woodland A B, Komprobst J, McPherson E, et al.Metasomatic interactions in the lithospheric mantle:petrologic evidence from the Lherz massif, French Pyrenees[J].Chemical Geology, 1996, 134:83-112 doi: 10.1016/S0009-2541(96)00082-4

    CrossRef Google Scholar

    [76] Agrinier P, Mével C, Bosch D, et al.Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island(Red Sea)[J].EPSL, 1993, 120:187-205. doi: 10.1016/0012-821X(93)90239-6

    CrossRef Google Scholar

    [77] McPherson E, Thirlwall I M F, Parkinson I J.Geochemistry of metasomatism adjacent to amphibole-bearing veins in the Lherz peridotite massif[J].Chemical Geology, 1996, 134:135-157. doi: 10.1016/S0009-2541(96)00084-8

    CrossRef Google Scholar

    [78] Grieco G, Ferrario A, Mathez E A.The effect of metasomatism on the Cr-PGE mineralization in the Finero Complex, Ivrea Zone, Southern Alps[J].Ore Geology Reviews, 2004, 24:299-314. doi: 10.1016/j.oregeorev.2003.05.004

    CrossRef Google Scholar

    [79] Beccaluva L, Bianchini G, Bonadiman C, et al.Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera(southern Spain)[J].Lithos, 2004, 75:67-87. doi: 10.1016/j.lithos.2003.12.015

    CrossRef Google Scholar

    [80] Lucassen F, Franz T G, Viramonte J, et al.The late Cretaceous lithospheric mantle beneath the Central Andes:Evidence from phase equilibria and composition of mantle xenoliths[J].Lithos, 2005, 82:379-406. doi: 10.1016/j.lithos.2004.08.002

    CrossRef Google Scholar

    [81] Marocchi M, Hermann J, Morten L.Evidence for multi-stage metasomatism of chlorite-amphibole peridotites(Ulten Zone, Italy):Constraints from trace element compositions of hydrous phases[J].Lithos, 2007, 99:85-104. doi: 10.1016/j.lithos.2007.05.010

    CrossRef Google Scholar

    [82] Frezzotti M L, Ferrando S, Peccerillo A.Chlorine-rich metasomatic H2O-CO2 fluids in amphibole-bearing peridotites from Injibara(Lake Tana region, Ethiopian plateau):Nature and evolution of volatiles in the mantle of a region of continental flood basalts[J].Geochimica et Cosmochimica Acta, 2010, 74:3023-3039. doi: 10.1016/j.gca.2010.02.007

    CrossRef Google Scholar

    [83] Tommasia A, Langone A, Padrón-Navarta J A, et al.Hydrous melts weaken the mantle, crystallization of pargasite and phlogopite does not:Insights from a petrostructural study of the Finero peridotites, southern Alps[J].EPSL, 2017, 477:59-72. doi: 10.1016/j.epsl.2017.08.015

    CrossRef Google Scholar

    [84] Kang H, Jung H.Lattice-preferred orientation of amphibole, chlorite, and olivine found in hydrated mantle peridotites from Bjrkedalen, southwestern Norway, and implications for seismic anisotropy[J].Tectonophysics, 2019, 750:137-152. doi: 10.1016/j.tecto.2018.11.011

    CrossRef Google Scholar

    [85] 张旗, 马宝林, 刘若新, 等.一个消减带之上的大陆岩石圈地慢残片:安徽饶拨寨超镁铁岩的地球化学特征[J].中国科学(B), 1995, 35(8):867-873.

    Google Scholar

    [86] 支霞臣, 靳永斌, 孟庆, 等.大别山北部饶拔寨超镁铁岩体微量元素地球化学[J].岩石学报, 2004, 20:463-472.

    Google Scholar

    [87] Pedrera A, Galindo-Zaldívar J, Acosta-Vigil A, et al.Serpentinization-driven extension in the Ronda mantle slab(Betic Cordillera, S.Spain)[J].Gondwana Research, 2016, 37:205-215. doi: 10.1016/j.gr.2016.05.008

    CrossRef Google Scholar

    [88] 仇东东.陕西省松树沟铬铁矿床成因与成矿预测研究[D].长安大学硕士学位论文, 2015.

    Google Scholar

    [89] 芮会超.北秦岭松树沟超镁铁质岩石及条带状铬铁矿成因研究[D].长安大学硕士学位论文, 2018.

    Google Scholar

    [90] 鲍佩声, 王希斌.对大道尔吉铬铁矿成因的新认识[J].矿床地质, 1998, 8(1):3-18.

    Google Scholar

    [91] 王希斌, 郝治国, 鲍佩声, 等.中国造山带蛇绿岩中铬铁矿床的成因类型及其成矿的若干特征[J].矿床地质, 1992, 11(1):21-34.

    Google Scholar

    [92] 苟国朝, 田培昭, 张新虎, 等.大道尔吉蛇绿岩型超镁铁岩铬铁矿中铂族元素分布特征[J].西北地质, 1994, 15(1):11-18.

    Google Scholar

    [93] Estebana J J, Sanchez-Rodriguez L, Seward D, et al.The late thermal history of the Ronda area, southern Spain[J].Tectonophysics, 2004, 389:81-92. doi: 10.1016/j.tecto.2004.07.050

    CrossRef Google Scholar

    [94] Reuber I, Michard A, Chalouan A, et al.Structure and emplacement of the Alpine-type peridotites from Beni Bousera, Rif, Morocco:A polyphase tectonic interpretation[J].Tectonophysics, 1982, 82:231-251. doi: 10.1016/0040-1951(82)90047-6

    CrossRef Google Scholar

    [95] Obata M, Karato S I.Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy[J].Tectonophysics, 1995, 242:313-328. doi: 10.1016/0040-1951(94)00228-2

    CrossRef Google Scholar

    [96] Kornprobst J, Vielzeuf D.Transcurrent crustal thinning: a mechanism for the uplift of deep continental crust/upper mantle associations[C]//Limberlites.II, Elsevier, Amsterdam, 1984: 347-359.

    Google Scholar

    [97] 张宗清, 张旗.北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征[J].岩石学报, 1995, 11(增刊):165-177.

    Google Scholar

    [98] 仇东东, 焦建刚, 姜建超, 等.北秦岭松树沟铬铁矿床三维地质建模及其找矿意义[J].地球科学与环境学报, 2014, 36(1):210-217.

    Google Scholar

    [99] 李海勇.大陆俯冲带交代作用: 苏鲁造山带橄榄岩地球化学制约[D].中国科学技术大学博士学位论文, 2017.

    Google Scholar

    [100] 李犇, 朱赖民, 弓虎军, 等.北秦岭松树沟橄榄岩与铬铁矿矿床的成因关系[J].岩石学报, 2010, 26(5):1487-1502.

    Google Scholar

    [101] 徐树桐, 江来利, 刘贻灿, 等.大别山(安徽部分)的构造格局和演化过程[J].地质学报, 1992, 59(4):279-285.

    Google Scholar

    [102] 李曙光, 聂永红, Jagoutz E, 等.大别山俯冲陆壳的再循环——地球化学证据[J].中国科学(D辑), 1997, 27(5):412-418.

    Google Scholar

    [103] 吴元保, 陈道公, 程昊, 等.北大别饶拔寨退变质榴辉岩的地球化学特征[J].地震地质, 2000, 22(增刊):99-103.

    Google Scholar

    [104] 靳永斌, 支霞臣, 孟庆, 等.大别山北部饶拔寨超镁铁岩体的形成时代:Re-Os同位素定年[J].科学通报, 2003, 48:2560-2565.

    Google Scholar

    [105] Zhi X C.Re-Os isotopic system and formation age of subcontinental lithosphere mantle[J].Chinese Science Bulletin, 2000, 45:193-200. doi: 10.1007/BF02884671

    CrossRef Google Scholar

    [106] Zhi X C, Jin Y B, Meng Q, et al.The Re-Os isotope geochemistry of the Raobazhai ultramafic complex of Dabieshan, central China[J].Geochim Cosmochim Acta, 2003, 67(18S):A83.

    Google Scholar

    [107] 王希斌, 杨经绥, 陈松永, 等.也谈铙钹寨超镁铁岩体的成因和构造类型的归属问题[J].岩石学报, 2005, 21:1593-1608.

    Google Scholar

    [108] 王希斌.对"也谈铙钹寨超镁铁岩体的成因和构造类型的归属问题"一文评论的答疑[J].岩石学报, 2006, 22(12):3084-3089.

    Google Scholar

    [109] 张旗.铙钹寨岩体是蛇绿岩吗?——评王希斌等:"也谈铙钹寨超镁铁岩体的成因和构造类型的归属问题"[J].岩石学报, 2006, 22(12):3079-3084.

    Google Scholar

    [110] Zheng L, Zhi X C, Reisberg L.Re-Os systematics of the Raobazhai peridotite massifs from the Dabie orogenic zone, eastern China[J].Chemical Geology, 2009, 268:1-14. doi: 10.1016/j.chemgeo.2009.06.021

    CrossRef Google Scholar

    [111] 匡少平, 凌文黎, 张本仁.大别造山带中镁铁质-超镁铁质岩石和榴辉岩有关问题的讨论[J].地质论评, 1999, 45(6):584-595.

    Google Scholar

    [112] 游振东, 桑隆康, 钟增球, 等.大别山北麓尖晶石橄榄岩中石榴辉石岩包体的成因矿物学信息[J].现代地质, 2001, 15(2):161-167.

    Google Scholar

    [113] 杨锡庸.安徽大别地区一个超镁铁质冷侵入体:对霍山县饶拨寨岩体的再认识[J].中国地质科学院南京地质矿产研究所所刊, 1983, (4):81-99.

    Google Scholar

    [114] 钟大赉, 等.滇川西部古特提斯造山带[M].北京:科学出版社, 2002:1-231.

    Google Scholar

    [115] 王奕萱, 王根厚, 袁国礼, 等.滇西三台山地幔橄榄岩的成因及其构造意义:来自地质学、矿物学和岩石地球化学的证据[J].地学前缘, 2018, 25(1):138-156.

    Google Scholar

    [116] 储著银, 王伟, 陈福坤, 等.云南潞西三台山超镁铁岩体Os-Nd-Pb-Sr同位素特征及地质意义[J].岩石学报, 2009, 25(12):3221-3228.

    Google Scholar

    [117] 刘慧明.云南三台山超基性岩与盈江超基性岩形成构造环境对比与含矿性研究[D].中国地质大学(北京)硕士学位论文, 2018.

    Google Scholar

    [118] 许志琴, 徐惠芬, 张建新, 等.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学[J].地质学报, 1994, 68:1-15.

    Google Scholar

    [119] 张旗, 郭原生, 王岳明, 等.祁连山地区镁铁-超镁铁岩的多样性[J].地球科学进展, 1997, 12(5):324-330.

    Google Scholar

    [120] 王二七, 张旗, Burchfiel C B.青海拉鸡山:一个多阶段抬升的构造窗[J].地质科学, 2000, 35:493-500.

    Google Scholar

    [121] 冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996.

    Google Scholar

    [122] 师占义.西北几个主要含矿超基性岩体的岩石矿物特征及意义[J].地质论评, 1980, 26(4):307-318.

    Google Scholar

    [123] Boulller A M, Firdaous K, Boudier F.Fluid circulation related to deformation in the Zabargad gneisses(Red Sea rift)[J].Tectonophysics, 1997, 279:281-302. doi: 10.1016/S0040-1951(97)00116-9

    CrossRef Google Scholar

    [124] Takla M A, Eldougdoug A A, Hussein A A A, et al.Petrogenesis of Zabargad ultramafic rocks and origin of peridot, Zabargad Island, Red Sea, Egypt[J].Annals of the Geological Survey of Egypt, 1997, 20:451-478.

    Google Scholar

    [125] Marshak S, Bonatti E, Brueckner H, et al.Fracture-zone tectonics at Island, Red Sea(Egypt)[J].Tectonophysics, 1992, 216:379-385. doi: 10.1016/0040-1951(92)90407-W

    CrossRef Google Scholar

    [126] Pelletier L, Müntener O.High-pressure metamorphism of the Lanzo peridotite and its oceanic cover, and some consequences for the Sesia-Lanzo zone(northwestern Italian Alps)[J].Lithos, 2006, 90:111-130. doi: 10.1016/j.lithos.2006.01.006

    CrossRef Google Scholar

    [127] Piccardo G B, Zanetti A, Muntener O.Melt/peridotite interaction in the southern Lanzo peridotite:Field, textural and geochemical evidence[J].Lithos, 2007, 94:181-209. doi: 10.1016/j.lithos.2006.07.002

    CrossRef Google Scholar

    [128] Rubatto D, Gebauer D, Compagnoni R.Dating of eclogitefacies zircons:the age of Alpine metamorphism in the Sesia-Lanzo Zone(Western Alps)[J].EPSL, 1999, 167:141-158. doi: 10.1016/S0012-821X(99)00031-X

    CrossRef Google Scholar

    [129] 刘欣雨, 张旗, 张成立.基于大数据方法建立大洋安山岩构造环境判别图[J].地质通报, 2019, 38(12):1963-1970.

    Google Scholar

    [130] 张旗, 李明超, 陈万峰, 等.岩石大地构造学说的兴起、没落与新生[J].大地构造与成矿学, 2020, 44(2):289-296.

    Google Scholar

    [131] Sanfilippo A, Tribuzio R, Ottolini L, et al.Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites(Western Alps):New constraints into melt migration processes at cold thermal regimes[J].Geochimica et Cosmochimica Acta, 2017, 214:51-72. doi: 10.1016/j.gca.2017.07.034

    CrossRef Google Scholar

    [132] Pognante U, Rsli U, Toscani L.Petrology of ultramafic and mafic rocks from the Lanzo peridotite body(Western Alps)[J].Lithos, 1985, 18:201-214. doi: 10.1016/0024-4937(85)90025-8

    CrossRef Google Scholar

    [133] Hartmann G, Wedepohl K H.The composition of peridotite tectonites from the Ivrea Complex, northern Italy:Residues from melt extraction[J].Geochimica et Cosmochimica Acta, 1993, 57:1761-1782. doi: 10.1016/0016-7037(93)90112-A

    CrossRef Google Scholar

    [134] Bodinier J L, Menzies M A, Thirlwall M.Continental to oceanic mantle transition—REE and Sr-Nd isotopic geochemistry of the Lanzo lherzolite massif.Orogenic lherzolites and mantle processes[J].Journal of Petrology, 1991, 20:191-210.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(1451) PDF downloads(20) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint