2020 Vol. 39, No. 11
Article Contents

FANG Weixuan. Classification and types of diagenetic lithofacies systems in the sedimentary basin[J]. Geological Bulletin of China, 2020, 39(11): 1692-1714.
Citation: FANG Weixuan. Classification and types of diagenetic lithofacies systems in the sedimentary basin[J]. Geological Bulletin of China, 2020, 39(11): 1692-1714.

Classification and types of diagenetic lithofacies systems in the sedimentary basin

  • Classification of diagenesis lithofacies systems in sedimentary basin may help promote the research level of enrichment and synergistic diagenesis-mineralization for metallic and nonmetallic deposits and such energy mineral resources as oil, gas, coal and uranium deposits in the same basin; moreover, it may encourage researchers to get a better understanding of geodynamic process in basin evolution and formation, coupling transitions of basin-mountain, and coupling transitions of basin-mountain-plateau. In this study, systems of diagenetic lithofacies in the basin were categorized based on the principal line of diagenesis events in the basin, using means of tectonic lithofacies and geochemical lithofacies, and combining diagenesis and systems of diagenetic lithofacies with recognition technology of geochemical lithofacies. Systems of diagenetic lithofacies in the basin were classified into four systems, i.e., diagenesis system formed by buried compaction to chemical diagenesis at the stage of basin formation, renovated diagenesis system formed by tectonic-thermal events at the stage of basin renovation, magmatic superimposed diagenesis system formed by thermal events of tectonics-magmatism at the stage of magmatic intrusions in the basin, and supergene diagenesis system at the stage of supergene modification in the basin. Therefore, environments of diagenetic lithofacies and diagenetic mechanisms may be recognized from the mechanism of geochemical lithofacies. This may help promote the research level of enrichment and synergistic diagenesis-mineralization for metallic and nonmetallic deposits, such energy mineral resources as oil, gas, coal and uranium deposits and predication of deep mineral systems in the same basin.

  • 加载中
  • [1] 中华人民共和国石油天然气行业标准, 碎屑岩成岩阶段划分规范(SY/T5477-2003)[S].国家经济贸易委员会, 2003.

    Google Scholar

    [2] 中华人民共和国石油天然气行业标准, 碳酸盐岩成岩阶段划分规范(SY/T 5478-92)[S].中华人民共和国能源部, 1993.

    Google Scholar

    [3] 邹才能, 陶士振, 周慧, 等.成岩相的形成、分类与定量评价方法[J].石油勘探与开发, 2008, 35(5):526-540.

    Google Scholar

    [4] 李忠, 刘嘉庆.沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向[J].沉积学报, 2009, 27(5):837-848.

    Google Scholar

    [5] 张金亮, 张鹏辉, 谢俊, 等.碎屑岩储集层成岩作用研究进展与展望[J].地球科学进展, 2013, 28(9):957-967.

    Google Scholar

    [6] 何江, 冯春强, 马岚, 等.风化壳古岩溶型碳酸盐岩储层成岩作用与成岩相[J].石油实验地质, 2015, 37(1):8-16.

    Google Scholar

    [7] 冉天, 谭先锋, 王佳, 等.陆相碎屑岩成岩作用系统研究进展及发展趋势[J].地质找矿论丛, 2017, 32(3):409-420.

    Google Scholar

    [8] 刘池洋, 赵红格, 赵俊峰, 等.能源盆地沉积学及其前沿科学问题[J].沉积学报, 2017, 35(5):1032-1043.

    Google Scholar

    [9] 方维萱.论沉积盆地内成岩相类型划分、动力学机制与找矿预测[J].矿床地质, 2018, 增刊:245-247.

    Google Scholar

    [10] 李荣西, 段立志, 陈宝赟, 等.东胜砂岩型铀矿氧化-酸性流体与还原碱性热液流体过度界面蚀变带成矿作用研究[J].大地构造与成矿学, 2011, 35(4):524-531.

    Google Scholar

    [11] 韩凤彬, 陈正乐, 陈柏林, 等.新疆喀什凹陷巴什布拉克铀矿流体包裹体及有机地球化学特征[J].中国地质, 2012, 39(4):985-998.

    Google Scholar

    [12] 董新丰, 薛春纪, 李志丹, 等.新疆喀什凹陷乌拉根铅锌矿床有机质特征及其地质意义[J].地学前缘, 2013, 2013, 20(1):129-145.

    Google Scholar

    [13] 刘家铎, 王峻, 王易斌, 等.塔里木盆地喀什北地区白垩系层序岩相古地理特征[J].地球科学与环境学报, 2013, 35(1):1-14.

    Google Scholar

    [14] 王丹, 吴柏林, 寸小妮, 等.柴达木盆地多种能源矿产同盆共存及其地质意义[J].地球科学与环境学报, 2015, 37(3):55-57.

    Google Scholar

    [15] 方维萱, 贾润幸, 郭玉乾, 等.塔西地区富烃类还原性盆地流体与砂砾岩型铜铅锌-铀矿床成矿机制[J].地球科学与环境学报, 2016, 38(6):727-752.

    Google Scholar

    [16] 方维萱, 贾润幸, 王磊.塔西陆内红层盆地中盆地流体类型、砂砾岩型铜铅锌-铀矿床的大规模褪色化围岩蚀变与金属成矿[J].地球科学与环境学报, 2017, 39(5):585-619.

    Google Scholar

    [17] 方维萱, 王磊, 贾润幸.塔西地区中-新生代盆-山-原镶嵌构造区:砂砾岩型铜铅锌-天青石-铀-煤成矿系统[J].地球科学与环境学报, 2018, 40(6):663-705.

    Google Scholar

    [18] 王伟, 李文渊, 高满新, 等.塔里木陆块西北缘萨热克砂岩型铜矿床构造-流体演化对成矿的制约[J].地质通报, 2018, 37(7):1315-1324.

    Google Scholar

    [19] 於崇文.地质系统的复杂性(上册和下册)[M].北京:地质出版社, 2003:3-1133.

    Google Scholar

    [20] 方维萱, 杨新雨, 柳玉龙, 等.岩相学填图技术在云南东川白锡腊铁铜矿段深部应用试验与找矿预测[J].矿物学报, 2012, 32(1):101-114.

    Google Scholar

    [21] 方维萱.论热液角砾岩构造系统及研究内容、研究方法和岩相学填图应用[J].大地构造与成矿学, 2016, 40(2):237-265.

    Google Scholar

    [22] 方维萱.岩浆侵入构造系统Ⅰ:构造岩相学填图技术研发与找矿预测效果[J].大地构造与成矿学, 2019, 43(3):473-506.

    Google Scholar

    [23] 方维萱, 杜玉龙, 李建旭, 著.大比例尺构造岩相学填图技术与找矿预测[M].北京:地质出版社, 2018:1-381.

    Google Scholar

    [24] 方维萱.地球化学岩相学类型及其在沉积盆地分析中应用[J].现代地质, 2012, 26(5):996-1007.

    Google Scholar

    [25] 方维萱.地球化学岩相学的研究内容、方法与应用实例[J].矿物学报, 2017, 37(5):509-526.

    Google Scholar

    [26] 方维萱.论铁氧化物铜金型(IOCG)矿床地球化学岩相学填图新技术研发[J].地球科学进展, 2012, 27(10):1178-1184.

    Google Scholar

    [27] 方维萱, 王磊, 鲁佳, 等.新疆萨热克铜矿床绿泥石化蚀变相与构造-岩浆-古地热事件的热通量恢复[J].矿物学报, 2017, 37(5):661-675.

    Google Scholar

    [28] 蒙义峰, 徐文艺, 杨竹森, 等.流体地质填图——一种新的地质调查方法[J].地质通报, 2002, 21(3):181-182.

    Google Scholar

    [29] 王涛, 计文化, 胡建民, 等.专题地质填图及有关问题讨论[J].地质通报, 2016, 35(5):633-641.

    Google Scholar

    [30] 李荣西, 王涛, 刘海青.地质流体与流体地质填图[J].地质通报, 2018, 37(2/3):325-336.

    Google Scholar

    [31] 韩文华, 方维萱, 张贵山, 等.新疆萨热克砂砾岩型铜矿区碎裂岩化相特征[J].地球科学与环境学报, 2017, 39(3):1-9.

    Google Scholar

    [32] 戢兴忠, 陈懋弘, 刘旭, 等.构造-蚀变填图在贵州泥堡金矿床的初步实践[J].地质通报, 2018, 37(2/3):254-261.

    Google Scholar

    [33] 刘卫彬, 张世奇, 李世臻, 等.东濮凹陷沙三段储层微裂缝发育特征及意义[J].地质通报, 2018, 37(2/3):496-502.

    Google Scholar

    [34] 罗静兰, 邵红梅, 杨艳芳, 等.松辽盆地深层火山岩储层的埋藏-烃类充注-成岩时空演化过程[J].地学前缘, 2013, 20(5):175-187.

    Google Scholar

    [35] 方维萱.论扬子地块西缘元古宙铁氧化物铜金型矿床与大地构造演化[J].大地构造与成矿学, 2014, 38(4):733-757.

    Google Scholar

    [36] 方维萱, 胡瑞忠, 苏文超, 等.大河边-新晃超大型重晶石矿床地球化学特征及形成的地质背景[J].岩石学报, 2002, 18(2):247-256.

    Google Scholar

    [37] 方维萱, 张国伟, 胡瑞忠, 等.秦岭造山带泥盆系热水沉积岩相应用研究及实例[J].沉积学报, 2001, 19(1):48-54.

    Google Scholar

    [38] 方维萱, 刘方杰, 胡瑞忠, 等.凤太泥盆纪拉分盆地中硅质铁白云岩-硅质岩特征及成岩成矿方式[J].岩石学报, 2000, 16(4):700-710.

    Google Scholar

    [39] 方维萱, 张国伟, 胡瑞忠, 等.陕西二台子铜金矿钠长石碳酸(角砾)岩类特征及形成构造背景分析[J].岩石学报, 2000, 16(3):392-400.

    Google Scholar

    [40] 郝国强, 王玖玲, 胡社荣, 等.峰峰矿区煤变质作用对煤层气中氮气含量的影响[J].中国煤层气, 2013, 11(1):14-16.

    Google Scholar

    [41] 王冲, 郑敏, 王华, 等.柴油在氮气存在条件下还原铜渣中磁性铁的模拟[J].化工进展, 2014, 33(5):1101-1107.

    Google Scholar

    [42] 李平, 陈天虎, 杨燕, 等.氮气保护下热处理胶状黄铁矿的矿物特性演化[J].硅酸盐学报, 2013, 41(11):1564-1570.

    Google Scholar

    [43] 李谨, 李志生, 王东良, 等.塔里木盆地含氮天然气地球化学特征及氮气来源[J].石油学报, 2013, 34(增刊):102-111.

    Google Scholar

    [44] 杜乐天, 欧光习.盆地形成及成矿与地幔流体间的成因联系[J].地学前缘, 2007, 14(2):218-200.

    Google Scholar

    [45] 杜乐天.幔汁——HACONS流体的重大意义[J].大地构造与成矿学, 1989, 31:91-99.

    Google Scholar

    [46] 郑大中, 郑若锋.论氢化物是成矿的重要迁移形式[J].盐湖研究, 2004, 12(4):9-16.

    Google Scholar

    [47] 黄瑞芳, 孙卫东, 丁兴, 等.橄榄岩蛇纹石化过程中氢气和烷烃的形成[J].岩石学报, 2015, 31(7):1901-1907.

    Google Scholar

    [48] 黄瑞芳, 孙卫东, 丁兴, 等.基性和超基性岩蛇纹石化的机理及成矿潜力[J].岩石学报, 2013, 29(12):4336-4348.

    Google Scholar

    [49] 张雪彤, 张荣华, 胡书敏.橄榄岩-卤水反应实验生成富烷氢流体[J].中国地质, 2017, 44(5):1027-1028.

    Google Scholar

    [50] 杨雷, 金之钧.深部流体中氢的油气成藏效应初探[J].地学前缘, 2001, 8(4):337-341.

    Google Scholar

    [51] 李玉宏, 魏仙样, 卢进才, 等.内蒙古自治区商都盆地新生界氢气成因[J].天然气工业, 2007, 27(9):28-30.

    Google Scholar

    [52] 杜乐天, 张景廉, 欧光习.石油天然气藏幔汁加氢和碱交代成因的再认识[J].地质论评, 2015, 61(5):1008-2010.

    Google Scholar

    [53] 梁汉东.煤岩自然释放氢气与瓦斯突出关系初探[J].煤炭学报, 2001, 26(6):637-642.

    Google Scholar

    [54] 周强, 江洪清, 梁汉东.沁水盆地南部煤层气中氢气释放规律研究[J].天然气地球科学, 2006, 17(6):871-873.

    Google Scholar

    [55] 琚宜文, 李清光, 颜志丰, 等.煤层气成因类型及其地球化学研究进展[J].煤炭学报, 2014, 39(5):806-815.

    Google Scholar

    [56] 吴柏林, 魏安军, 胡亮, 等.油气耗散作用及其成岩成矿效应:进展、认识与展望[J].地质论评, 2014, 60(6):1119-1211.

    Google Scholar

    [57] 刘池洋, 马艳萍, 吴柏林, 等.油气耗散——油气地质研究和资源评价的弱点和难点[J].石油与天然气地质.2008, 29(4):517-526.

    Google Scholar

    [58] 马艳萍, 刘池阳, 王建强.盆地后期改造中油气运散的效应——鄂尔多斯盆地东北部中生界漂白砂岩的形成[J].石油与天然气地质, 2006, 27(2):233-243.

    Google Scholar

    [59] 董林森, 刘立, 朱德丰, 等.海拉尔盆地贝尔凹陷火山碎屑岩自生碳酸盐矿物分布及对储层物性的影响[J].地球科学与环境学报, 2011, 33(3):253-260.

    Google Scholar

    [60] 孙先达, 李宜强, 崔永强, 等.海拉尔-塔木察格盆地凝灰质储层次生孔隙及碱交代作用[J].东北石油大学学报, 2013, 37(5):32-44.

    Google Scholar

    [61] 沈光政, 王殿斌, 张民.海拉尔盆地柯绿泥石和钠板石的组合特征及其石油地质意义[J].电子显微学报, 2006, 25(增刊):311.

    Google Scholar

    [62] 邹华耀, 郝芳, 张伯桥, 等.库车山前逆冲带超压流体主排放通道对油气成藏的控制[J].石油学报, 2005, 26(2):11-20.

    Google Scholar

    [63] 杨海军, 张荣虎, 杨宪彰, 等.超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学, 2018, 29(7):942-950.

    Google Scholar

    [64] 王珂, 张惠良, 张荣虎, 等.超深层致密砂岩储层构造裂缝定量表征与分布预测——以塔里木盆地库车坳陷克深5气藏为例[J].地球科学与环境学报, 2017, 39(5):652-668.

    Google Scholar

    [65] 汪新, 唐鹏程, 谢会文, 等.库车坳陷西段新生代盐构造特征及演化[J].大地构造与成矿学, 2009, 33(1):57-65.

    Google Scholar

    [66] 余一欣, 汤良杰, 杨文静, 等.库车坳陷盐相关构造与有利油气勘探领域[J].大地构造与成矿学, 2007, 31(4):404-411.

    Google Scholar

    [67] 程海艳.库车褶皱冲断带西段盐底辟成因机制[J].吉林大学学报:地球科学版, 2014, 44(4):1134-1141.

    Google Scholar

    [68] 赵孟军, 鲁雪松, 卓勤功, 等.库车前陆盆地油气成藏特征与分布规律[J].石油学报, 2015, 36(4):395-404.

    Google Scholar

    [69] 韩润生, 王雷, 方维萱, 等.初论易门凤山铜矿床刺穿构造岩-岩相分带模式[J].地质通报, 2011, 30(4):495-504.

    Google Scholar

    [70] 王雷, 韩润生, 胡一多, 等.易门凤山铜矿床两类刺穿构造岩石地球化学特征及形成机制[J].大地构造与成矿学, 2014, 38(4):822-832.

    Google Scholar

    [71] 方维萱、黄转莹、刘方杰.八卦庙超大型金矿床构造-矿物-地球化学[J].矿物学报, 2000, 20(2):121-127.

    Google Scholar

    [72] 方维萱, 黄转盈.陕西凤太拉分盆地构造变形样式与动力学及金-多金属成矿[J].中国地质, 2012, 39(5):1211-1228.

    Google Scholar

    [73] 张旗, 金维浚, 王金荣, 等.岩浆热场对油气成藏的影响[J].地球物理学进展, 2016, 31(4):1525-1541.

    Google Scholar

    [74] 高长海, 查明.不整合运移通道类型及输导油气特征[J].地质学报, 2008, 82(8):1113-1120.

    Google Scholar

    [75] Flores B O F, Hardyman R F, Jimenez C H N, et al.Mapa Geologico Del Area Berenguela Hojas Santiago De Machaca-Charana-Thola Kkollu (Escala 1: 100000)[M].Servicio Geologico De Bolivia, Proyecto Bid-USGS Geobol, 1994: 1-34.

    Google Scholar

    [76] 万丛礼, 付金华, 张军.鄂尔多斯西缘前陆盆地构造热事件与油气运移[J].地球科学与环境学报, 2005, 27(2):43-47.

    Google Scholar

    [77] 邹和平, 张珂, 李刚.鄂尔多斯地块早白垩世构造-热事件:杭锦旗玄武岩的Ar-Ar年代学证据[J].大地构造与成矿学, 2008, 32(3):360-364.

    Google Scholar

    [78] 杨兴科, 晁会霞, 张哲, 等.鄂尔多斯盆地东部紫金山岩体特征与形成的动力学环境——盆地热力-岩浆活动的深部作用典型实例剖析[J].大地构造与成矿学, 2010, 34(2):269-281.

    Google Scholar

    [79] 任战利, 张盛, 高胜利, 等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学(D辑), 2007, 37(增刊):23-32.

    Google Scholar

    [80] 李荣西, 段立志, 张少妮, 等.鄂尔多斯盆地低渗透油气藏形成研究现状与展望[J].地球科学与环境学报, 2011, 33(4):364-372.

    Google Scholar

    [81] 覃小丽, 李荣西, 席胜利, 等.鄂尔多斯盆地东部上古生界储层热液蚀变作用[J].天然气地质, 2017, 28(1):43-50.

    Google Scholar

    [82] 方维萱, 王磊, 王寿成, 等.塔西砂砾岩型铜铅锌矿床成矿规律与找矿预测[M].北京:科学出版社, 2019:1-424.

    Google Scholar

    [83] 季建清, 韩宝福, 朱美妃, 等.西天山托云盆地及周边中新生代岩浆活动的岩石地球化学与年代学研究[J].岩石学报, 2006, 22(5):1324-1340.

    Google Scholar

    [84] 刘殿蕊.云南宣威地区峨眉山玄武岩风化壳中发现铌、稀土矿[J].中国地质, 2020, 47(2):540-541.

    Google Scholar

    [85] 冯乔, 杨晚, 柳益群.博格达南缘二叠系古土壤类型及其在层序地层研究中的应用[J].沉积学报, 2008, 26(5):725-729.

    Google Scholar

    [86] 侯连华, 王京红, 邹才能, 等.火山岩风化体储层控制因素研究——以三塘湖盆地石炭系卡拉岗组为例[J].地质学报, 2011, 85(4):557-568.

    Google Scholar

    [87] Sillitoe R H, McKee E H.Age of supergene oxidation and enrichment in the Chilean porphyry copper province[J].Economic Geology, 1996, 91:164-179.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(846) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint