Citation: | LIU Gui, ZHOU Yongsheng. An experimental study of shear deformation and mineral composition changes of granite under the condition of high temperature and high pressure[J]. Geological Bulletin of China, 2020, 39(11): 1840-1849. |
The fluid-controlling mineralization mechanism during tectonic deformation is a worldwide research focus.In order to comprehend the behavior and role of shear tectonic stress and fluids in the process of tectonic diagenesis and mineralization, it is the key to study the mechanical-chemical effects in the shear deformation process.In this study, the authors analyzed the distribution of mineral reaction and the change of chemical composition caused by the mineral reaction in experimental deformed granite samples under the condition of high temperature and high pressure and discussed interaction between mineral reactions and deformation.The results indicate that plagioclase, k-feldspar and pyroxene can endure brittle-plastic deformation, while most of the quartz and mica display plastic deformation.The hydrolysis of K-feldspar and pyroxene due to the fluid-rock interaction is the most characteristic reaction in the minerals.The strain localization dominantly controls the overall deformation in the experiment.With the strengthening of shear deformation, the brittle fracture gradually forms and develops into cracks.Thus the stress is released, and metal elements are filled along the cracks.These microscopic characteristics are common in the experimental samples, similar to features of the vein in the field.This experiment provides experimental data for the rheological behavior, chemical behavior and shearing process of the ductile shear zone.
[1] | 付山岭, 胡斌.从微观尺度探讨韧性剪切带型金矿的成矿模式[J].黄金科学技术, 2010, 18(2):31-34. |
[2] | Zhong Z Q, You Z D.Compositional variation and volume loss of a shear zone-Hetai shear zone as a case history[J].Chinese Science Bulletin, 1995, 40(19):1638-1641. |
[3] | 王春增, 李晓峰, 易先奎.江西金山金矿控矿韧性剪切带的递进变形成矿机理:显微构造证据[J].桂林工学院学报, 2009, 29(2):169-182. |
[4] | Fyfe W S.Metamorphic fluids[J].Earth Science Review, 1992, 32(1/2):1-146. |
[5] | Fyfe W S, Kerrich R.Fluids and thrusting[J].Chemical Geology, 1985, 49(1/3):353-362. |
[6] | Koons P O, Craw D, Cox S C, et al.Fluid flow during active oblique convergence:A Southern Alps model from mechanical and geochemical observations[J].Geology, 1998, 26(2):159-162. |
[7] | Sibson R H, Scott J.Stress-fault controls on the containment and release of overpressured fluids:Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand[J].Ore Geology Reviews, 1998, 13(1/5):293-306. |
[8] | Travé A, Calvet F, Sans M, et al.Fluid history related to the Alpine compression at the margin of the South-Pyrenean Foreland basin:the Eiguix anticline[J].Tectonophysics, 2000, 321(1):73-102. |
[9] | Ghisetti F, Kirschner D, Vezzani L.Tectoniccontrols on large-scale fluid circulation in the Apennines(Italy)[J].Journal of Geochemical Exploration, 2000, 69:533-537. |
[10] | Craw D.Fluid flow at fault intersections in an activeoblique collision zone, Southern Alps, New Zealand[J].Journal of Geochemical Exploration, 2000, 69:523-526. |
[11] | Craw D, Koons P O, Horton T, et al Tectonically driven fluid flow and gold mineralization in active collisional orogenic belts:Comparison between New Zealand and western Himalaya[J].Tectonophysics, 2002, 348(1):135-153. |
[12] | Robl J, Fritz H, Stüwe K, et al.Cyclic fluid infiltration in structurally controlled Ag-Pb-Cu occurrences(Schladming, Eastern Alps)[J].Chemical Geology, 2004, 205(1/2):17-36. |
[13] | Bellot J P.Extensional deformation assisted by mineralized fluids within the brittle-ductile transition:Insights from the southwestern Massif Central, France[J].Journal of Structural Geology, 2007, 29(2):225-240. |
[14] | 万天丰.关于中国构造地质学研究中几个问题的探讨[J].地质通报, 2008, 27(9):1441-1450. |
[15] | Andrew H A, Geoffrey R C, Greg W.Synchronous advanced argillic alteration and deformation in a shear zone hosted magmatic hydrothermal Au-Ag deposit at the Temora Mine, new south Wales Australia[J].Economic Geology, 1995, 90(6):1570-1603. |
[16] | Tullis J, Yund R, Farver J.Deformation enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones[J].Geology, 1996, 24(1):63-66. |
[17] | 许德如, 吴传军, 吕古贤, 等.岩石流变原理在构造成矿研究中的应用——以BIF型富铁矿床为例[J].大地构造与成矿学, 2015, 1:93-109. |
[18] | 吕古贤.构造物理化学的研究与应用[J].中国地质, 1997, (10):45-48. |
[19] | 吕古贤.构造物理化学的研究进展[J].科学通报, 2003, 48(2):101. |
[20] | 吕古贤.构造动力成岩成矿和构造物理化学研究[J].地质力学学报, 2019, 25(5):962-980. |
[21] | 吕古贤, 邓军, 李晓波, 等, 构造物理化学的思路、研究和问题[J].地质学报, 2006, 80(10):1616-1626. |
[22] | 岳石, 马瑞, 王子潮.关于韧性变形与成矿作用的一些实验结果[J].地质找矿论丛, 1990, 5(4):30-35. |
[23] | 陈先兵.花岗闪长斑岩高温高压实验及其成矿地质意义[J].地质科技情报, 1994, 13(1):63-69. |
[24] | 肖化云, 吴学益.金山金矿田构造变形特征及其模拟实验[J].地质地球化学, 1997, (3):80-86. |
[25] | 吴学益, 尚精华, 张开平.金山金矿构造控矿特征及其模拟实验[J].矿物学报, 2007, 27(2):143-152. |
[26] | 郑远川, 顾连兴, 汤晓茜, 等.2009.天然矿石中硫化物的同构造再活化实验研究[J].地质学报, 83(1):31-42. |
[27] | 陈柏林, 董法先, 李中坚.矿物中元素迁移变化的高温高压实验研究[J].地质力学学报, 1998, 4(1):72-77. |
[28] | 陈正乐.高温高压下成矿元素运移聚集模拟实验[J].地质力学学报, 1999, 2(2):90-93. |
[29] | 刘贵, 周永胜, 姚文明, 等.组构对花岗片麻岩高温流变影响的实验研究[J].地球物理学报, 2013, 56(7):2332-2347. |
[30] | Liu G, Zhou Y S, He C R, et al.Experimental study on effect of pre-existing fabric to deformation of foliated mylonite under high temperature and pressure[J].Geological Journal, 2016, 51(1):92-112. |
[31] | Kohlstedt D L, Zimmerman M E, Mackwell S J.Stress-driven melt segregation in partially molten feldspathic rocks[J].Journal of Petrology, 2010, 51(1/2):9-19. |
[32] | Pec M, Stünitz H, Heilbronner R.Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures[J].Journal of Structural Geology, 2012, 38:200-221. |
[33] | Pec M, Stünitz H, Heilbronner R, et al.Semi-brittle flow of granitoid fault rocks in experiments[J].Journal of Geophysical Research, Solid Earth, 2016, 121:1677-1705. |
[34] | Holyoke C W, Tullis J.The interaction between reaction and deformation:an experimental study using abiotite, plagioclase, quartz gneiss[J].J.Geology, 2006, 24:743-762. |
[35] | Etheridge M A, Hobbs B E.Chemical and deformational controls on recrystallization of mica[J].Contributions to Mineralogy and Petrology, 1974, 43:111-124. |
[36] | Bell T H.Syntectonic nucleation of new grains in deformed mica[J].Tectonophysics, 1978, 51:31-37. |
[37] | Holyoke C W, Tullis J.Mechanisms of weak phase interconnection and the effects of phase strength contrast on fabric development[J].Journal of Structural Geology, 2006, 28:621-640. |
[38] | Stunitz H, Tullis J.Weakening and strain localization produced by syn-deformational reaction of plagioclase[J].Tectonophysics, 2001, 90:136-148. |
[39] | 刘铁兵, 曾庚栋.山东蒙阴常马走滑式韧性剪切带控矿研究[J].地质与矿产, 2001, 37(1):15-19. |
Sample assembly
Design of experimental sample
Microstructure of granite and gabbro samples(SEM)
The stress-stain curves of experimentally deformed samples
The dehydration reaction of biotite and pyroxene in deformed samples and distribution of melt under scanning electron microscopy(SEM)