2020 Vol. 39, No. 12
Article Contents

HU Junliang, TAN Hongqi, ZHOU Xiong, NI Zhiyao, ZHOU Yu. A study of mineralogy and mineral chemistry of ore-bearing pegmatites in the Daqianggou lithium-beryllium deposit, western Sichuan[J]. Geological Bulletin of China, 2020, 39(12): 2013-2028.
Citation: HU Junliang, TAN Hongqi, ZHOU Xiong, NI Zhiyao, ZHOU Yu. A study of mineralogy and mineral chemistry of ore-bearing pegmatites in the Daqianggou lithium-beryllium deposit, western Sichuan[J]. Geological Bulletin of China, 2020, 39(12): 2013-2028.

A study of mineralogy and mineral chemistry of ore-bearing pegmatites in the Daqianggou lithium-beryllium deposit, western Sichuan

More Information
  • The Daqianggou pegmatite type lithium-beryllium deposit is a typical medium-sized lithium-beryllium deposit in Jiulong area.Its geotectonic location is located in the Yajiang residual basin on the southern margin of the Songpan-Garze fold belt, and the deposit is an important part of the Songpan-Garze lithium metallogenic belt.The main types of ore-bearing pegmatites in the Daqianggou deposit can be divided into albite type and albite-spodumene type, and the main ore minerals are spodumene and beryl.In this paper, based on the field geological survey work, the authors chose typical veins (ⅠLi, Be and ⅡBe) in the Daqianggou lithium beryllium deposit to conduct studies of facieology, mineralogy and mineral chemistry in order to reveal the sequence order of mineral formation and ore-forming stages.The results of electron microprobe analysis show that the lithium-containing mineral is mainly spodumene.The content of Li2O in spodumene is 7.94%~8.29%, averaging 8.12%.Mica minerals are muscovite and lithium-rich phengite.The content of Li2O in muscovite is 0.08%~0.35%, averaging 0.21%, and the content of Rb2O is 0.13%~0.35%, averaging 0.24%.The Li2O content in lithium-rich phengite is 1.11%~1.43%, averaging 1.28%, and the Rb2O content is 0.79%~0.94%, averaging 0.87%.Tourmaline belongs to an iron tourmaline-lithium tourmaline series, with Li2O content of 0.48%~0.85%, averaging 0.64%.Based on the detailed study of the microscopic characteristics of minerals combined with electron microprobe analysis, the authors hold that the rare metal mineral changes in pegmatite are in order of beryl → beryl + spodumene → spodumene → spodumene + lithium-rich phengite, mica changes from muscovite to lithium-rich phengite, tourmaline transition from iron tourmaline to lithium tourmaline, feldspar mineral is composed of micro-plagioclase + albite → albite → metasodium albite, and quartz changes from primary quartz to late hydrothermal quartz.Finally, a comprehensive analysis suggests that the metallogenic stages of the Daqianggou lithium-beryllium deposit underwent a multi-stage evolution process, which could be mainly divided into crystallization stage, metasomatic stage and hydrothermal stage.The formation of rare metal minerals such as lithium and beryllium minerals mainly occurred in the crystallization stage and metasomatic stage.

  • 加载中
  • [1] 李建康.川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D].中国地质大学(北京)博士学位论文, 2006.

    Google Scholar

    [2] 付小方, 侯立玮, 王登红, 等.四川甘孜甲基卡锂辉石矿矿产调查评价成果[J].中国地质调查, 2014, 1(3):37-43.

    Google Scholar

    [3] 李建康, 刘喜方, 王登红.中国锂矿成矿规律概要[J].地质学报, 2014, 88(12):2269-2283.

    Google Scholar

    [4] 周平, 唐金荣, 张涛.全球锂资源供需前景与对策建议[J].地质通报, 2014, 33(10):1532-1538. doi: 10.3969/j.issn.1671-2552.2014.10.009

    CrossRef Google Scholar

    [5] 蔡艳龙, 李建武.全球锂资源开发利用形势分析与启示[J].地球学报, 2017, 38(1):25-29.

    Google Scholar

    [6] 李建康, 邹天人, 王登红, 等.中国铍矿成矿规律[J].矿床地质, 2017, 36(4):951-978.

    Google Scholar

    [7] 梁飞.我国铍资源特征、供需预测与发展探讨[D].中国地质科学院硕士学位论文, 2018.

    Google Scholar

    [8] 王登红, 李建康, 付小方.四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J].地球化学, 2005, (6):3-9.

    Google Scholar

    [9] 王登红, 付小方.四川甲基卡外围锂矿找矿取得突破[J].岩矿测试, 2013, 32(6):987. doi: 10.3969/j.issn.0254-5357.2013.06.023

    CrossRef Google Scholar

    [10] 李建康, 付小方, 邹天人, 等.四川甲基卡锂矿床的找矿突破及外围找矿前景分析[J].矿床地质, 2014, (S1):1175-1176.

    Google Scholar

    [11] 王登红, 刘丽君, 侯江龙, 等.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型[J].地学前缘, 2017, 24(5):1-7.

    Google Scholar

    [12] 户双节.川西甲基卡稀有金属矿区典型矿床的地质特征与找矿意义[D].西南科技大学硕士学位论文, 2018.

    Google Scholar

    [13] 付俊杰.四川道孚容须卡南锂辉石矿床地质特征及成因探讨[D].成都理工大学硕士学位论文, 2015.

    Google Scholar

    [14] 周雄, 周玉, 张贻, 等.川西甲基卡-容须卡-长征穹隆稀有金属找矿前景分析[C]//第八届全国成矿理论与找矿方法学术讨论会论文摘要文集, 2017: 289-290.

    Google Scholar

    [15] 周雄, 周玉, 罗丽萍, 等.川西容须卡锂辉石矿床石英闪长岩锆石LA-ICP-MS测年及构造意义[J].矿物岩石, 2018, 38(4):88-97.

    Google Scholar

    [16] 徐云峰, 秦宇龙, 王显锋, 等.四川容须卡伟晶岩型锂多金属矿床地球化学特征及成矿地质条件[J].中国地质调查, 2019, 6(1):34-40.

    Google Scholar

    [17] 叶亚康, 曾敏, 周雄, 等.松潘-甘孜造山带容须卡岩浆-穹隆地质特征及构造演化[J].中国地质调查, 2019, 6(3):37-46.

    Google Scholar

    [18] 耿海涛.川西道孚容须卡含矿花岗伟晶岩地球化学、年代学及其成矿意义[D].成都理工大学硕士学位论文, 2020.

    Google Scholar

    [19] 古城会.四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J].地质找矿论丛, 2014, 29(1):59-65.

    Google Scholar

    [20] 王子平, 刘善宝, 马圣钞, 等.四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向[J].地球科学, 2018, 43(6):2029-2041.

    Google Scholar

    [21] 马圣钞, 王登红, 刘善宝, 等.川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J].矿床地质, 2019, 38(4):877-897.

    Google Scholar

    [22] 费光春, 杨峥, 杨继忆, 等.四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定:来自LA-MC-ICP-MS锡石U-Pb定年的证据[J].地质学报, 2020, 94(3):836-849. doi: 10.3969/j.issn.0001-5717.2020.03.012

    CrossRef Google Scholar

    [23] 殷聃.四川省九龙县打枪沟锂铍矿床地质特征及找矿潜力研究[D].成都理工大学硕士学位论文, 2017.

    Google Scholar

    [24] 谭洪旗, 周雄, 罗林洪, 等.四川九龙锂铍矿床地质特征及找矿方向[C]//第九届全国成矿理论与找矿方法学术讨论会论文摘要集, 2019: 169.

    Google Scholar

    [25] 王伟, 刘图强, 袁蔺平, 等.川西九龙黄牛坪铍矿床地质特征及找矿潜力[J].中国地质调查, 2019, 6(6):72-78.

    Google Scholar

    [26] 张博, 殷聃, 成欣怡, 等.松潘-甘孜造山带南东段羊房沟石英闪长岩时代、成因及地质意义[J].矿产勘查, 2019, 10(10):2475-2485. doi: 10.3969/j.issn.1674-7801.2019.10.002

    CrossRef Google Scholar

    [27] Yan D P, Zhou M F, Song H L, et al.Structural style and tectonic significance of the Jianglang dome in the eastern margin of the Tibetan Plateau, China[J].Journal of Structural Geology, 2003, 25(5):765-779. doi: 10.1016/S0191-8141(02)00059-7

    CrossRef Google Scholar

    [28] 许志琴, 王汝成, 赵中宝, 等.试论中国大陆"硬岩型"大型锂矿带的构造背景[J].地质学报, 2018, 92(6):1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001

    CrossRef Google Scholar

    [29] 万传辉, 袁静, 李芬香, 等.松潘-甘孜造山带南段晚三叠世兰尼巴和羊房沟花岗岩岩石学、地球化学特征及成因[J].岩石矿物学杂志, 2011, 30(2):185-198. doi: 10.3969/j.issn.1000-6524.2011.02.003

    CrossRef Google Scholar

    [30] 袁静, 肖龙, 万传辉, 等.松潘-甘孜南部放马坪-三岩龙花岗岩的成因及其构造意义[J].地质学报, 2011, 85(2):195-206.

    Google Scholar

    [31] 周家云, 谭洪旗, 龚大兴, 等.川西江浪弯隆核部新火山花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素研究[J].矿物岩石, 2013, 33(4):42-52. doi: 10.3969/j.issn.1001-6872.2013.04.005

    CrossRef Google Scholar

    [32] 周家云, 谭洪旗, 龚大兴, 等.乌拉溪铝质A型花岗岩:松潘-甘孜造山带早燕山期热隆伸展的岩石记录[J].地质评论, 2014, 60(2):348-362.

    Google Scholar

    [33] 朱玉娣, 代堰锫, 王丽丽, 等.松潘-甘孜造山带南缘江浪穹隆文家坪花岗岩成因及地质意义[J].现代地质, 2018, 32(1):16-27.

    Google Scholar

    [34] 路远发.GeoKit一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004

    CrossRef Google Scholar

    [35] Tischendorf G, Gottesmann B, Forster H J, et al.On Li-Bearing micas estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J].Mineralogical Magazine, 1997, 61(409):809-834. doi: 10.1180/minmag.1997.061.409.05

    CrossRef Google Scholar

    [36] 常丽华, 陈曼云, 金巍, 等.透明矿物薄片鉴定手册[M].北京:地质出版社, 2006:1-236.

    Google Scholar

    [37] 王汝成, 谢磊, 诸泽颖, 等.云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J].岩石学报, 2019, 35(1):69-75.

    Google Scholar

    [38] Henry D J, Guidotti C V.Tourmaline as a Petrogenetic Indicator Mineral-An Example from the Staurolite-Grade Metapelites of NW Maine[J].American Mineralogist, 1985, 70(1):1-15.

    Google Scholar

    [39] Selway J B.A review of rare-element(Li-Cs-Ta)pegmatite exploration techniques for the superior province, Canada, and large worldwide tantalum deposits[J].Exploration and Mining Geology, 2005, 14(1/4):1-30.

    Google Scholar

    [40] Cěrny P, Robert E, Meintzer J, et al.Extreme fraction in rare-element pegmatite:selected example of data and mechanism[J].Canadian Mineralogist, 1985, 23:381-421.

    Google Scholar

    [41] Cěrny P.Rare-element granitic pegmatite.Part Ⅰ:Regional to global environments and petrogenesis[J].Geoscience Canada, 1991, 16(2):68-81.

    Google Scholar

    [42] Foord E E, Černý P, Jackson L L, et al.Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith, Colorado[J].Mineralogy and Petrology, 1995, 55(1/3):1-26. doi: 10.1007/BF01162576

    CrossRef Google Scholar

    [43] Wise M A.Trace element chemistry of lithium-rich micas from rare-element granitic pegmatites[J].Mineralogy and Petrology, 1995, 55(1/3):203-215. doi: 10.1007/BF01162588

    CrossRef Google Scholar

    [44] Kile D E, Foord E E.Micas from the Pikes Peak batholith and its cogenetic granitic pegmatites, Colorado:Optical properties, composition, and correlation with pegmatite evolution[J].Canadian Mineralgosit, 1998, 36(2):463-482.

    Google Scholar

    [45] Viana R R, Jordt-Evangelista H, Stern W B.Geochemistry of muscovite from pegmatites of the Eastern Brazilian pegmatite province:A clue to petrogenesis and mineralization potential[J].European Journal of Mineralogy, 2007, 19(5):745-755. doi: 10.1127/0935-1221/2007/0019-1760

    CrossRef Google Scholar

    [46] Vieira R R, Roda-Robles E, Pesquera A, et al.Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field(Central-Iberian Zone, Spain and Portugal)[J].American Mineralogist, 2011, 96(4):637-645.

    Google Scholar

    [47] 周起凤, 秦克章, 唐冬梅, 等.阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J].岩石学报, 2013, 29(9):3004-3022.

    Google Scholar

    [48] 吴福元, 刘小驰, 纪伟强, 等.高分异花岗岩的识别与研究[J].中国科学:地球科学, 2017, 47(7):745-765.

    Google Scholar

    [49] Hinsberg V J V, Henry D J, Dutrow B L.Tourmaline as a petrologic forensic mineral:A unique recorder of its geologic past[J].Elements, 2011, 7(5):327-332. doi: 10.2113/gselements.7.5.327

    CrossRef Google Scholar

    [50] Yang S Y, Jiang S Y, Palmer M R.Chemical and boron isotopic compositions of tourmaline from the Nyalam Leucogranites, South Tibetan Himalayas:Implication for Their Formation from B-rich Melt to Hydrothermal Fluids[J].Chemical Geology, 2015, 419:102-113. doi: 10.1016/j.chemgeo.2015.10.026

    CrossRef Google Scholar

    [51] Yang S Y, Jiang S Y.Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China:Evidence for Roron Mobilisation and Infiltration During Magmatic-Hydrothermal Processes[J].Chemical Geology, 2012, 312/313(1):177-189.

    Google Scholar

    [52] Zhang A C, Wang R C, Jiang S Y, et al.Chemical and textural features of tourmaline from the spodumene-subtype koktokay No.3 pegmatite, Altai, Northwestern China:A record of magmatic to hydrothermal evolution[J].Canadian Mineralogist, 2008, 46(1):41-58.

    Google Scholar

    [53] Rao C, Wang R C, Zhang A C.The corundum plus tourmaline nodules related to hydrothermal alteration of spodumene in the Nanping No.31 pegmatite dyke, Fujian Province, Southeastern China[J].Canadian Mineralogist, 2012, 50(6):1623-1635.

    Google Scholar

    [54] 伍守荣, 赵景宇, 张新, 等.新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液过程:来自电气石化学组成演化的证据[J].矿物学报, 2015, 35(3):299-308.

    Google Scholar

    [55] 李乐广, 王连训, 田洋, 等.华南幕阜山花岗伟晶岩的矿物化学特征及指示意义[J].地球科学, 2019, 44(7):2532-2550.

    Google Scholar

    [56] 卢宗柳.我国电气石矿床类型及其地质特征[J].矿产与地质, 2008, 22(2):174-177.

    Google Scholar

    [57] 侯江龙, 王登红, 王成辉, 等.河北曲阳县中佐伟晶岩脉中电气石的类型和成岩成矿环境研究[J].岩矿测试, 2017, 36(5):529-537.

    Google Scholar

    [58] Henry D J, Dutrow B L.Metammorphic tourmaline and its petrologic applications[J].Reviews in Mineralogy and Geochemistry, 1996, 33(1):503-557.

    Google Scholar

    [59] 李金.四川金川马场沟锂辉石矿床地质特征及成因分析[D].成都理工大学硕士学位论文, 2018.

    Google Scholar

    四川省地质矿产局攀西地质大队.四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告.1984.

    Google Scholar

    四川省地质局.九龙幅区域地质调查报告.1977.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(5)

Article Metrics

Article views(1604) PDF downloads(20) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint